神经网络变得简单(第 71 部分):目标条件预测编码(GCPC)
在之前的文章中,我们讨论了决策转换器方法,以及从其衍生的若干种算法。我们测验了不同的目标设定方法。在测验期间,我们依据各种设定目标的方式进行操作。然而,该模型早期研究时验算过的轨迹,始终处于我们的关注范围之外。在这篇文章中。我想向您介绍一种填补此空白的方法。
神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)
通过研究 FEDformer 方法,我们打开了时间序列频域表述的大门。在这篇新文章中,我们将继续一开始的主题。我们将研究一种方法,据其我们不仅能进行分析,还可以预测特定区域的后续状态。
神经网络变得简单(第 61 部分):离线强化学习中的乐观情绪问题
在离线学习期间,我们基于训练样本数据优化了智能体的政策。成品政策令智能体对其动作充满信心。然而,这种乐观情绪并不总是正当的,并且可能会在模型操作期间导致风险增加。今天,我们要寻找降低这些风险的方法之一。
使用PSAR、Heiken Ashi和深度学习进行交易
本项目探索深度学习与技术分析的融合,用于在外汇市场测试交易策略。使用Python脚本进行快速实验,结合ONNX模型和传统指标(如PSAR、SMA和RSI)来预测欧元/美元(EUR/USD )的走势。之后,MQL5脚本将此策略引入实时环境,利用历史数据和技术分析帮助交易者做出明智的交易决策。回测结果表明,该策略秉持保守且稳健的运作理念,始终将风险管控置于首位,追求持续稳定的收益增长模式,摒弃激进逐利的行为。
种群优化算法:模拟各向同性退火(SIA)算法。第 II 部分
第一部分专注于众所周知、且流行的算法 — 模拟退火。我们已经通盘研究了它的利弊。本文的第二部分专注于算法的彻底变换,将其转变为一种新的优化算法 — 模拟各向同性退火(SIA)。
射箭算法(Archery Algorithm, AA)
本文详细探讨了受射箭启发的优化算法——射箭算法(Archery Algorithm, AA),重点介绍了如何使用轮盘赌法(roulette method)作为选择“箭矢”目标区域的机制。该方法允许评估解决方案的质量,并选择最有希望的位置进行进一步的探究。
神经网络变得轻松(第四十八部分):降低 Q-函数高估的方法
在上一篇文章中,我们概述了 DDPG 方法,它允许在连续动作空间中训练模型。然而,与其它 Q-学习方法一样,DDPG 容易高估 Q-函数的数值。这个问题往往会造成训练代理者时选择次优策略。在本文中,我们将研究一些克服上述问题的方式。
数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货
众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。
股票交易中的非线性回归模型
股票交易中的非线性回归模型:能否预测金融市场?让我们考虑创建一个用于预测欧元兑美元(EURUSD)汇率的模型,并基于此模型制作两个交易机器人——分别使用Python和MQL5语言。
神经网络变得简单(第 75 部分):提升轨迹预测模型的性能
我们创建的模型变得越来越大,越来越复杂。这不光提高了它们的训练成本,还有操作成本。不过,做出决定所需的时间往往很关键。有关于此,我们来研究在不损失品质的情况下优化模型性能的方法。
种群优化算法:微人工免疫系统(Micro-AIS)
本文研究一种基于人体免疫系统原理的优化方法 — 微人工免疫系统(Micro-AIS) - AIS 的修订版。Micro-AIS 使用更简单的免疫系统模型,和更简单的免疫信息处理操作。本文还讨论了 Micro-AIS 与传统 AIS 相比的优缺点。
借助成交量精准洞悉交易动态:超越传统OHLC图表
一种将成交量分析与机器学习技术(特别是LSTM神经网络)相结合的算法交易系统。与主要关注价格波动的传统交易方法不同,该系统强调成交量模式及其衍生指标,以预测市场走势。该方法包含三个主要组成部分:成交量衍生指标分析(一阶和二阶导数)、基于LSTM的成交量模式预测,以及传统技术指标。
MQL5中的范畴论(第19部分):自然性四边形归纳法
我们继续通过探讨自然性四边形归纳法来研究自然变换。对于使用MQL5向导构建的EA交易来说,对多货币实现的轻微限制意味着我们正在通过脚本展示我们的数据分类能力。所考虑的主要应用是价格变化分类及其预测。
使用PatchTST机器学习算法预测未来24小时的价格走势
在本文中,我们将应用2023年发布的一种相对复杂的神经网络算法——PatchTST,来预测未来24小时的价格走势。我们将使用官方仓库的代码,并对其进行一些微小的修改,训练一个针对EURUSD(欧元兑美元)的模型,然后在Python和MQL5环境中应用该模型进行未来预测。
神经网络变得轻松(第四十九部分):软性扮演者-评价者
我们继续讨论解决连续动作空间问题的强化学习算法。在本文中,我将讲演软性扮演者-评论者(SAC)算法。SAC 的主要优点是拥有查找最佳策略的能力,不仅令预期回报最大化,而且拥有最大化的动作熵(多样性)。
您应当知道的 MQL5 向导技术(第 09 部分):K-Means 聚类与分形波配对
“K-均值”聚类采用数据点分组的方式,该过程最初侧重于数据集的宏观视图,使用随机生成的聚类质心,然后放大并调整这些质心,从而准确表示数据集。我们将对此进行研究,并开拓一些它的用例。
群体优化算法:随机扩散搜索(SDS)
本文讨论了基于随机游走原理的随机扩散搜索(Stochastic Diffusion Search,SDS)算法,它是一种非常强大和高效的优化算法。该算法允许在复杂的多维空间中找到最优解,同时具有高收敛速度和避免局部极值的能力。
关于因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在市场事件预测中的应用实例
本文提供了一个使用因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在MQL5中实现复杂交易系统的全面指南。文章涵盖了这些方法的理论背景,详细解释了交易算法中的关键函数,并提供了实现的示例代码。
Python中的虚假回归(伪回归)
虚假回归通常发生在两个时间序列之间仅因偶然因素而展现出高度相关性时,这会导致回归分析产生误导性的结果。在这种情况下,尽管变量之间可能看似存在关联,但这种关联仅仅是巧合,模型可能并不可靠。
重构经典策略(第十一部分)移动平均线的交叉(二)
移动平均线和随机振荡器可用于生成趋势跟踪交易信号。然而,这些信号只有在价格行为发生之后才会被观察到。我们可以有效地利用人工智能克服技术指标中这种固有的滞后性。本文将教您如何创建一个完全自主的人工智能驱动型EA,这种方式可以改进您现有的任何交易策略。即使是最古老的交易策略也可以被改进。
群体优化算法:带电系统搜索(CSS)算法
在本文中,我们将探讨另一种受无生命自然启发的优化算法--带电系统搜索(Charged System Search,CSS)算法。本文旨在介绍一种基于物理和力学原理的新的优化算法。
密码锁算法(CLA)
在本文中,我们将重新考虑密码锁,将它们从安全机制转变为解决复杂优化问题的工具。让我们探索密码锁的世界,不再将其视为简单的安全装置,而是作为优化问题新方法的灵感来源。我们将创建一整群“锁”,其中每把锁都代表问题的一个独特解决方案。然后,我们将开发一种算法来“破解”这些锁,并从机器学习到交易系统开发等多个领域中找到最优解。
因果推理中的倾向性评分
本文探讨因果推理中的匹配问题。匹配用于比较数据集中的类似观察结果,这对于正确确定因果关系和消除偏见是必要的。作者解释了这如何有助于构建基于机器学习的交易系统,这些系统在没有经过训练的新数据上变得更加稳定。倾向性评分在因果推理中起着核心作用并被广泛应用。
数据科学与机器学习(第24部分):使用常规AI模型进行外汇时间序列预测
在外汇市场中,如果不了解过去的情况,就很难预测未来的趋势。很少有机器学习模型能够通过考虑过去的数据来做出未来预测。在本文中,我们将讨论如何使用经典(非时间序列)人工智能模型来战胜市场。
通过成交量洞察交易:趋势确认
增强型趋势确认技术结合了价格行为、成交量分析和机器学习,用以识别真实的市场行情。该技术要求价格突破和成交量激增(高于平均值50%)这两个条件同时满足以验证交易信号,同时使用一个LSTM神经网络进行附加确认。该系统采用基于ATR(平均真实波幅)的仓位调整和动态风险管理,使其能够适应不同的市场条件,同时过滤掉虚假信号。
MQL5中的范畴论(第23部分):对双重指数移动平均的不同看法
在这篇文章中,我们继续我们的主题,最后是从“新”的角度处理日常交易指标。我们正在为这篇文章处理自然变换的水平组合,而这方面的最佳指标是双重指数移动平均(DEMA),它扩展了我们刚刚涵盖的内容。
神经网络变得轻松(第五十三部分):奖励分解
我们已经不止一次地讨论过正确选择奖励函数的重要性,我们通过为单独动作添加奖励或惩罚来刺激代理者的预期行为。但是关于由代理者解密我们的信号的问题仍旧悬而未决。在本文中,我们将探讨将单独信号传输至已训练代理者时的奖励分解。
使用莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法训练多层感知器
本文介绍了一种用于训练前馈神经网络的莱文贝格-马夸尔特(Levenberg-Marquardt,LM)算法的实现。与Python的scikit-learn库中的算法进行性能比较分析。初步探讨更简便的学习方法,如梯度下降、带动量的梯度下降和随机梯度下降。
您应当知道的 MQL5 向导技术(第 45 部分):蒙特卡洛强化学习
蒙特卡洛是我们正在研究的第四种不同的强化学习算法,目的是探索它在向导汇编智能交易系统中的实现。尽管它锚定在随机抽样,但它提供了我们可以利用的多种模拟方法。
矩阵分解基础知识
由于这里的目标是教学,我们将尽可能简单地进行。也就是说,我们将只实现所需的功能:矩阵乘法。今天您将看到,这足以模拟矩阵标量乘法。许多人在使用矩阵分解实现代码时遇到的最大困难是:与标量分解不同,在标量分解中,几乎所有情况下因子的顺序都不会改变结果,但使用矩阵时情况并非如此。