交易中的神经网络:降低锐度强化变换器效率(SAMformer)
训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系
市场如何遵循基于斐波那契数列的关系?在斐波那契数列中,每个后续数字都等于前两个数字之和(1, 1, 2, 3, 5, 8, 13, 21……),该数列不仅描述了兔子种群的增长情况。我们将考虑毕达哥拉斯的假设,即世间万物都遵循某种数字关系……
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易
当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)
在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
神经网络实践:绘制神经元
在本文中,我们将构建一个基本神经元。虽然它看起来很简单,许多人可能会认为这段代码完全微不足道,毫无意义,但我希望你在学习这个简单的神经元草图时能玩得开心。不要害怕修改代码,完全理解它才是目标。
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数
损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种
在本文中,我们将利用生成式对抗网络(GAN)创建一个合成品种,涉及生成逼真的财经数据,即模仿真实市场金融产品(例如 EURUSD)的行为。GAN 模型从历史市场数据中学习形态和波动性,并创建拥有相似特征的合成价格数据。
辩证搜索(DA)
本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
在训练中激活神经元的函数:快速收敛的关键?
本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
交易中的神经网络:基于 ResNeXt 模型的多任务学习
基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
人工部落算法(ATA)
文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
用Python构建一个远程外汇风险管理系统
我们将用Python构建一个远程外汇风险管理系统,并逐步将其部署到服务器上。在本文中,我们将学习如何通过编程管理外汇风险,以及如何避免外汇账户资金再次损失殆尽。
交易中的神经网络:层次化双塔变换器(终篇)
我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)
我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
皇冠同花顺优化(RFO)
最初的皇冠同花顺优化算法提供了一种解决优化问题的新方法,受到扑克牌原则启发,以基于扇区的方式取代了传统的遗传二进制编码算法。RFO 展现出简化的基本原理如何带来高效、且实用的优化方法。文章呈现了一份详细的算法分析和测试结果。
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC
强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)
针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
交易中的神经网络:层次化双塔变换器(Hidformer)
我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)
我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
成功餐饮经营者算法(SRA)
成功餐饮经营者算法(SRA)是一种受餐饮业管理原则启发的创新优化方法。与传统方法不同,SRA不会直接淘汰劣质解,而是通过融合优质解的元素对其进行改进。该算法在优化问题中展现出极具竞争力的表现,并为平衡探索与利用提供了全新视角。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
台球优化算法(BOA)
BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。
数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心
在一个充斥着杂乱且不可预测数据的世界里,识别有意义的形态可能颇具挑战性。在本文中,我们将探讨季节性分解,这是一种强力分析技术,有助于把数据拆分为关键成分:趋势、季节性形态、和噪声。以该途径拆解数据,我们能够揭示隐藏的洞见,并配以更清晰、更易解读的信息工作。
神经类群优化算法 (NOA)
一种新的生物启发的优化元启发式算法——NOA(Neuroboids Optimization Algorithm,神经类群优化算法),结合了集体智能和神经网络的原理。与传统方法不同,该算法使用了一个由具备自学习能力的“神经类群(neuroboids)”组成的群体,每个神经类群都拥有自己的神经网络,能够实时调整其搜索策略。本文揭示了该算法的架构、代理的自学习机制,以及这种混合方法在解决复杂优化问题方面的应用前景。
外汇套利交易:分析合成货币的走势及其均值回归
在本文中,我们将使用Python和MQL5来分析合成货币的走势,并探讨当今外汇套利的可行性。我们还会考虑现成的用于分析合成货币的Python代码,并分享更多关于外汇中合成货币是什么的细节。