关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
交易中的神经网络:降低锐度强化变换器效率(SAMformer)

交易中的神经网络:降低锐度强化变换器效率(SAMformer)

训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
preview
圆搜索算法(CSA)

圆搜索算法(CSA)

本文提出一种基于圆几何特性的新型元启发式优化算法——圆搜索算法(CSA)。该算法通过模拟切线方向上的点移动机制,在解空间中实现全局探索与局部开发的协同优化。
preview
将互信息作为渐进特征选择的准则

将互信息作为渐进特征选择的准则

在本文中,我们展示了基于最优预测变量集与目标变量之间互信息渐进特征选择的MQL5实现。
preview
斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系

斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系

市场如何遵循基于斐波那契数列的关系?在斐波那契数列中,每个后续数字都等于前两个数字之和(1, 1, 2, 3, 5, 8, 13, 21……),该数列不仅描述了兔子种群的增长情况。我们将考虑毕达哥拉斯的假设,即世间万物都遵循某种数字关系……
preview
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易

数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易

当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
preview
具有强化学习和灭绝失败个体的进化交易算法(ETARE)

具有强化学习和灭绝失败个体的进化交易算法(ETARE)

在本文中,我介绍了一种创新的交易算法,其针对外汇交易结合了进化算法与深度强化学习。该算法利用低效个体灭绝机制来优化交易策略。
preview
基于机器学习构建均值回归策略

基于机器学习构建均值回归策略

本文提出了另一种基于机器学习的原创交易系统构建方法,该方法运用聚类分析和交易标注来设计均值回归策略。
preview
以 MQL5 实现强化分类任务的融汇方法

以 MQL5 实现强化分类任务的融汇方法

在本文中,我们讲述以 MQL5 实现若干融汇分类器,并讨论了它们在不同状况下的功效。
preview
神经网络实践:绘制神经元

神经网络实践:绘制神经元

在本文中,我们将构建一个基本神经元。虽然它看起来很简单,许多人可能会认为这段代码完全微不足道,毫无意义,但我希望你在学习这个简单的神经元草图时能玩得开心。不要害怕修改代码,完全理解它才是目标。
preview
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
preview
财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种

财经建模中合成数据的生成式对抗网络(GAN)(第 2 部分):创建测试合成品种

在本文中,我们将利用生成式对抗网络(GAN)创建一个合成品种,涉及生成逼真的财经数据,即模仿真实市场金融产品(例如 EURUSD)的行为。GAN 模型从历史市场数据中学习形态和波动性,并创建拥有相似特征的合成价格数据。
preview
辩证搜索(DA)

辩证搜索(DA)

本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
preview
集成学习模型中的门控机制

集成学习模型中的门控机制

在本文中,我们继续探讨集成模型,重点讨论“门控”的概念,尤其是门控如何通过整合模型输出来提升预测准确性或模型泛化能力。
preview
在训练中激活神经元的函数:快速收敛的关键?

在训练中激活神经元的函数:快速收敛的关键?

本文研究了在神经网络训练背景下,不同激活函数与优化算法之间的相互作用。我们特别关注了经典的 ADAM 算法及其种群版本在处理多种激活函数(包括振荡的 ACON 和 Snake 函数)时的表现。通过使用一个极简的 MLP (1-1-1) 架构和单个训练样本,我们将激活函数对优化的影响与其他因素隔离开来。文章提出了一种通过激活函数边界来管理网络权重的方法,以及一种权重反射机制,这有助于避免训练中的饱和和停滞问题。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习

交易中的神经网络:基于 ResNeXt 模型的多任务学习

基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
preview
人工部落算法(ATA)

人工部落算法(ATA)

文章提供了 ATA 优化算法关键组成部分和创新的详细讨论,其为一种进化方法,具有独特的双重行为系统,可根据状况进行调整。ATA 结合了个体和社会学习,同时使用交叉进行探索和迁徙,从而在陷入局部最优时找到解。
preview
MQL5中用于预测与分类评估的重采样技术

MQL5中用于预测与分类评估的重采样技术

本文将探讨并实现一种方法:利用单一数据集同时作为训练集和验证集,来评估模型质量。
preview
交易中的神经网络:二维连接空间模型(Chimera)

交易中的神经网络:二维连接空间模型(Chimera)

本文将探讨创新的 Chimera 框架:利用神经网络分析多元时间序列的二维状态空间模型。该方法具有高精度和低计算成本,优于传统方式和变换器架构。
preview
用Python构建一个远程外汇风险管理系统

用Python构建一个远程外汇风险管理系统

我们将用Python构建一个远程外汇风险管理系统,并逐步将其部署到服务器上。在本文中,我们将学习如何通过编程管理外汇风险,以及如何避免外汇账户资金再次损失殆尽。
preview
交易中的神经网络:层次化双塔变换器(终篇)

交易中的神经网络:层次化双塔变换器(终篇)

我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
preview
交易中的神经网络:配备概念强化的多智代系统(FinCon)

交易中的神经网络:配备概念强化的多智代系统(FinCon)

我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
preview
皇冠同花顺优化(RFO)

皇冠同花顺优化(RFO)

最初的皇冠同花顺优化算法提供了一种解决优化问题的新方法,受到扑克牌原则启发,以基于扇区的方式取代了传统的遗传二进制编码算法。RFO 展现出简化的基本原理如何带来高效、且实用的优化方法。文章呈现了一份详细的算法分析和测试结果。
preview
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC

强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
preview
交易中的神经网络:层次化双塔变换器(Hidformer)

交易中的神经网络:层次化双塔变换器(Hidformer)

我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
preview
成功餐饮经营者算法(SRA)

成功餐饮经营者算法(SRA)

成功餐饮经营者算法(SRA)是一种受餐饮业管理原则启发的创新优化方法。与传统方法不同,SRA不会直接淘汰劣质解,而是通过融合优质解的元素对其进行改进。该算法在优化问题中展现出极具竞争力的表现,并为平衡探索与利用提供了全新视角。
preview
交易中的神经网络:配备概念强化的多智代系统(终篇)

交易中的神经网络:配备概念强化的多智代系统(终篇)

我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
preview
台球优化算法(BOA)

台球优化算法(BOA)

BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。
preview
数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心

数据科学和机器学习(第 34 部分):时间序列分解,剖析股票市场的核心

在一个充斥着杂乱且不可预测数据的世界里,识别有意义的形态可能颇具挑战性。在本文中,我们将探讨季节性分解,这是一种强力分析技术,有助于把数据拆分为关键成分:趋势、季节性形态、和噪声。以该途径拆解数据,我们能够揭示隐藏的洞见,并配以更清晰、更易解读的信息工作。
preview
神经类群优化算法 (NOA)

神经类群优化算法 (NOA)

一种新的生物启发的优化元启发式算法——NOA(Neuroboids Optimization Algorithm,神经类群优化算法),结合了集体智能和神经网络的原理。与传统方法不同,该算法使用了一个由具备自学习能力的“神经类群(neuroboids)”组成的群体,每个神经类群都拥有自己的神经网络,能够实时调整其搜索策略。本文揭示了该算法的架构、代理的自学习机制,以及这种混合方法在解决复杂优化问题方面的应用前景。
preview
外汇套利交易:分析合成货币的走势及其均值回归

外汇套利交易:分析合成货币的走势及其均值回归

在本文中,我们将使用Python和MQL5来分析合成货币的走势,并探讨当今外汇套利的可行性。我们还会考虑现成的用于分析合成货币的Python代码,并分享更多关于外汇中合成货币是什么的细节。