基于交易量的神经网络分析:未来趋势的关键
本文探讨了通过将技术分析原理与 LSTM 神经网络架构相结合,基于交易量分析来改进价格预测准确性的可能性。文章特别关注异常交易量的检测与解读、聚类方法的使用,以及基于交易量的特征创建及其在机器学习背景下的定义。
MQL5 中的范畴论 (第 15 部分):函子与图论
本文是以 MQL5 实现范畴论,着眼于函子之系列的续篇,但这次是作为图论和集合之间的桥梁。我们重新审视日历数据,尽管它在策略测试器中存在使用局限,但在相关性的帮助下,可利用函子来预测波动性。
种群优化算法:进化策略,(μ,λ)-ES 和 (μ+λ)-ES
本文研究一套称为进化策略(ES)的优化算法。它们是最早使用进化原理来寻找最优解的种群算法之一。我们将针对传统的 ES 变体实现变更,并修改算法的测试函数和测试台方法。
MQL5 中的范畴论 (第 12 部分):秩序(Orders)
本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
MQL5 中的范畴论 (第 17 部分):函子与幺半群
本文是我们系列文章的最后一篇,将函子作为一个主题来讨论,且把幺半群作为一个范畴来重新审视。幺半群已在我们的系列中多次讲述,于此配合多层感知器帮助确定持仓规模。
交易中的神经网络:时空神经网络(STNN)
在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。
血液遗传优化算法(BIO)
我向大家介绍我的新种群优化算法——血液遗传优化算法(Blood Inheritance Optimization,BIO),该算法的灵感源自人类血型遗传系统。在该算法中,每个解都有其自身的“血型”,这一血型决定了其进化方式。正如自然界中,孩子的血型是依据特定规则遗传而来,在BIO算法中,新解通过一套遗传与变异机制来获取自身特性。
基于LSTM的趋势预测在趋势跟踪策略中的应用
长短期记忆网络(LSTM)是一种特殊的循环神经网络(RNN),其设计初衷是通过有效捕捉数据中的长期依赖关系,并解决传统RNN存在的梯度消失问题,从而实现对时序数据的高效建模。本文将系统阐述如何利用LSTM进行未来趋势预测,进而提升趋势跟踪策略的实战表现。具体内容涵盖这些模块:LSTM关键概念介绍与发展契机、从MetaTrader 5平台提取数据、在Python中构建并训练模型、将机器学习模型嵌入MQL5中、基于统计回测的结果分析与改进方向。
神经网络变得轻松(第五十五部分):对比内在控制(CIC)
对比训练是一种无监督训练方法表象。它的目标是训练一个模型,突显数据集中的相似性和差异性。在本文中,我们将谈论使用对比训练方式来探索不同的扮演者技能。
MQL5 中的范畴论 (第 16 部分):多层感知器函子
本文是我们系列文章的第 16 篇,继续考察函子以及如何使用人工神经网络实现它们。我们偏离了迄今为止在该系列中所采用的方式,这涉及预测波动率,并尝试实现自定义信号类来设置入仓和出仓信号。
您应当知道的 MQL5 向导技术(第 35 部分):支持向量回归
支持向量回归是一种理想主义的途径,寻找最能描述两组数据之间关系的函数或“超平面”。我们尝试在 MQL5 向导的自定义类内利用这一点来进行时间序列预测。
种群优化算法:二进制遗传算法(BGA)。第 I 部分
在本文中,我们将探讨二进制遗传和其它种群算法中所用的各种方法。我们将见识到算法的主要组成部分,例如选择、交叠和突变,以及它们对优化的影响。此外,我们还将研究数据表示方法,及其对优化结果的影响。
大爆炸-大坍缩(BBBC)算法
本文介绍了大爆炸-大坍缩方法,该方法包含两个关键阶段:随机点的循环生成,以及将这些点压缩至最优解。该方法结合了探索与精炼过程,使我们能够逐步找到更优的解,并开拓新的优化可能性。
神经网络变得简单(第 69 部分):基于密度的行为政策支持约束(SPOT)
在离线学习中,我们使用固定的数据集,这限制了环境多样性的覆盖范围。在学习过程中,我们的 Agent 能生成超出该数据集之外的动作。如果没有来自环境的反馈,我们如何判定针对该动作的估测是正确的?在训练数据集中维护 Agent 的政策成为确保训练可靠性的一个重要方面。这就是我们将在本文中讨论的内容。
利用CatBoost机器学习模型作为趋势跟踪策略的过滤器
CatBoost是一种强大的基于树的机器学习模型,擅长基于静态特征进行决策。其他基于树的模型,如XGBoost和随机森林(Random Forest),在稳健性、处理复杂模式的能力以及可解释性方面具有相似特性。这些模型应用广泛,可用于特征分析、风险管理等多个领域。在本文中,我们将逐步介绍如何将训练好的CatBoost模型用作经典移动平均线交叉趋势跟踪策略的过滤器。
无政府社会优化(ASO)算法
本文中,我们将了解无政府社会优化(Anarchic Society Optimization,ASO)算法,并探讨一个基于无政府社会(一个摆脱中央权力和各种等级制度的异常社会交互系统)中参与者非理性与冒险行为的算法是如何能够探索解空间并避免陷入局部最优陷阱的。本文提出了一种适用于连续问题和离散问题的统一ASO结构。
化学反应优化(CRO)算法(第一部分):在优化中处理化学
在本文的第一部分中,我们将深入化学反应的世界并发现一种新的优化方法!化学反应优化 (CRO,Chemical reaction optimization) 利用热力学定律得出的原理来实现有效的结果。我们将揭示分解、合成和其他化学过程的秘密,这些秘密成为了这种创新方法的基础。
您应当知道的 MQL5 向导技术(第 28 部分):据入门学习率重新审视 GAN
学习率是许多机器学习算法在训练过程期间,朝向训练目标迈进的步长。我们检验了其众多调度和格式对于生成式对抗网络性能的影响,该神经网络类型我们在早前文章中已检验过。
数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具
探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。
神经网络变得简单(第 84 部分):可逆归一化(RevIN)
我们已经知晓,输入数据的预处理对于模型训练的稳定性扮演重要角色。为了在线处理 “原始” 输入数据,我们往往会用到批量归一化层。但有时我们需要一个逆过程。在本文中,我们将讨论解决该问题的可能方式之一。
《数据科学与机器学习(第25部分):使用循环神经网络(RNN)进行外汇时间序列预测》
循环神经网络(RNN)非常擅长利用过去的信息来预测未来的事件。它们卓越的预测能力已经在各个领域得到了广泛应用,并取得了巨大成功。在本文中,我们将部署RNN模型来预测外汇市场的趋势,展示它们在提高外汇交易预测准确性方面的潜力。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(三)—— 适配器微调
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
禁忌搜索(TS)
本文讨论了禁忌搜索(Tabu Search)算法,这是一种最早且最为人所知的元启发式方法之一。我们将详细探讨该算法的运行过程,从选择初始解并探索邻近选项开始,重点介绍使用禁忌表。文章涵盖了该算法的关键方面及其特性。
神经网络变得简单(第 94 部分):优化输入序列
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。
分析交易所价格的二进制代码(第一部分):技术分析的新视角
本文提出了一种基于将价格波动转换为二进制代码的技术分析创新方法。作者展示了市场行为的各个方面——从简单的价格波动到复杂形态——如何被编码为一系列的0和1。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
基于Python与MQL5的多模块交易机器人(第一部分):构建基础架构与首个模块
我们将开发一个模块化交易系统,该系统结合了 Python 进行数据分析,并使用 MQL5 执行交易。四个独立模块并行监控市场的不同方面:成交量、套利、经济指标和风险,并使用包含400棵树的随机森林( RandomForest )。特别强调风险管理,因为即使是最先进的交易算法,如果没有适当的风险管理,也是毫无用处的。
从Python到MQL5:量子启发式交易系统的探索之旅
本文探讨了量子启发式交易系统的开发过程,该系统从Python原型过渡到MQL5实现,以应用于现实世界的交易中。该系统运用了量子计算原理(如叠加态和纠缠态)来分析市场状态,尽管这是在经典计算机上使用量子模拟器运行的。该系统的关键特性包括:采用三量子比特系统,可同时分析八种市场状态;设置24小时的回溯观察期;并运用七种技术指标进行市场分析。尽管准确率看似一般,但若结合恰当的风险管理策略,该系统仍能提供显著的优势。
重塑经典策略(第六部分):多时间框架分析
在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。