关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

您应当知道的 MQL5 向导技术(第 15 部分):协同牛顿多项式的支持向量机

支持向量机基于预定义的类,按探索增加数据维度的效果进行数据分类。这是一种监督学习方法,鉴于其与多维数据打交道的潜力,它相当复杂。至于本文,我们会研究进行价格行为分类时,如何运用牛顿多项式更有效地做到非常基本的 2-维数据实现。
preview
您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。
preview
交易中的神经网络:搭配预测编码的混合交易框架(终篇)

交易中的神经网络:搭配预测编码的混合交易框架(终篇)

我们继续研习 StockFormer 混合交易系统,其结合了预测编码和强化学习算法,来分析金融时间序列。该系统基于三个变换器分支,搭配多样化多头注意力(DMH-Attn)机制,能够捕获资产之间的复杂形态、和相互依赖关系。之前,我们已领略了该框架的理论层面,并实现了 DMH-Attn 机制。今天,我们就来聊聊模型架构和训练。
preview
接受者操作特征(ROC)曲线入门

接受者操作特征(ROC)曲线入门

ROC 曲线是用于评估分类器性能的图形工具。尽管 ROC 图形相对简单,但在实践中使用它们时,仍存在一些常见的误解和误区。本文旨在为那些希望理解分类器性能评估的交易者提供一份关于 ROC 图形的入门介绍。
preview
经济预测:探索 Python 的潜力

经济预测:探索 Python 的潜力

如何使用世界银行的经济数据进行预测?当你将人工智能模型和经济学结合起来时会发生什么?
preview
交易中的神经网络:多智代自适应模型(终篇)

交易中的神经网络:多智代自适应模型(终篇)

在上一篇文章中,我们讲述了多智代自适应框架 MASA,它结合了强化学习方法和自适应策略,在动荡的市场条件下提供了盈利能力、及风险之间的和谐平衡。我们已在该框架内构建了单个智代的功能。在本文中,我们继续我们已开始的工作,令其得出合乎逻辑的结论。
preview
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
preview
神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

神经网络变得简单(第 88 部分):时间序列密集编码器(TiDE)

为尝试获得最准确的预测,研究人员经常把预测模型复杂化。而反过来又会导致模型训练和维护成本增加。这样的增长总是公正的吗?本文阐述了一种算法,即利用线性模型的简单性和速度,并演示其结果与拥有更复杂架构的最佳模型相当。
preview
人工协作搜索算法 (ACS)

人工协作搜索算法 (ACS)

人工协作搜索算法ACS (Artificial Cooperative Search) 是一种创新方法,它利用二进制矩阵和基于互利共生与合作的多个动态种群来快速准确地找到最优解。ACS在捕食者与猎物问题上的独特处理方法使其能够在数值优化问题中取得卓越成果。
preview
交易中的神经网络:使用小波变换和多任务注意力的模型

交易中的神经网络:使用小波变换和多任务注意力的模型

我们邀请您探索一个结合小波变换和多任务自注意力模型的框架,旨在提高波动市场条件下预测的响应能力、和准确性。小波变换可将资产回报分解为高频和低频,精心捕捉长期市场趋势、和短期波动。
preview
使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

使用 LSTM 神经网络创建时间序列预测:规范化价格和令牌化时间

本文概述了一种使用每日范围对市场数据进行归一化并训练神经网络以增强市场预测的简单策略。开发的模型可以与现有的技术分析框架结合使用,也可以单独使用,以帮助预测整体市场方向。任何技术分析师都可以进一步完善本文中概述的框架,以开发适用于手动和自动交易策略的模型。
preview
神经网络变得简单(第 86 部分):U-形变换器

神经网络变得简单(第 86 部分):U-形变换器

我们继续研究时间序列预测算法。在本文中,我们将讨论另一种方法:U-形变换器。
preview
您应当知道的 MQL5 向导技术(第 23 部分):CNNs

您应当知道的 MQL5 向导技术(第 23 部分):CNNs

卷积神经网络是另一种机器学习算法,倾向于专门将多维数据集分解为关键组成部分。我们看看典型情况下这是如何达成的,并探索为交易者在其它 MQL5 向导信号类中的可能应用。
preview
在 IBM 量子计算机上分析所有价格变动选项

在 IBM 量子计算机上分析所有价格变动选项

我们将使用 IBM 的量子计算机来发现所有价格变动选项。听起来像科幻小说?欢迎来到用于交易的量子计算世界!
preview
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
preview
群体算法的基类作为高效优化的支柱

群体算法的基类作为高效优化的支柱

该文章代表了一种独特的研究尝试,旨在将多种群体算法组合成一个类,以简化优化方法的应用。这种方法不仅为开发新算法(包括混合变体)开辟了机会,而且还创建了一个通用的基本测试平台。它成为根据特定任务选择最佳算法的关键工具。
preview
在 MQL5 中提升数值预测的集成方法

在 MQL5 中提升数值预测的集成方法

在本文中,我们展示了在 MQL5 中实现多种集成学习方法,并检验了它们在不同场景下的有效性。
preview
将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

将 MQL5 与数据处理包集成 (第 2 部分):机器学习和预测分析

在我们关于将 MQL5 与数据处理包集成的系列文章中,我们深入研究了机器学习和预测分析的强大组合。我们将探索如何将 MQL5 与流行的机器学习库无缝连接,以便为金融市场提供复杂的预测模型。
preview
分析交易所价格的二进制代码(第二部分):转换为 BIP39 并编写 GPT 模型

分析交易所价格的二进制代码(第二部分):转换为 BIP39 并编写 GPT 模型

继续尝试破译价格走势……我们将通过将二进制价格代码转换为 BIP39 来获得一个“市场词典”,那么,对这个词典进行语言学分析又如何呢?在本文中,我们将深入探讨一种创新的交易所数据分析方法,并研究如何将现代自然语言处理技术应用于市场语言。
preview
群体算法的混合 -顺序结构和并行结构

群体算法的混合 -顺序结构和并行结构

在这里,我们将深入探讨优化算法混合的三个主要类型:策略混合、顺序混合和并行混合。我们将结合并测试相关的优化算法进行一系列实验。
preview
交易中的神经网络:通过Adam-mini优化减少内存消耗

交易中的神经网络:通过Adam-mini优化减少内存消耗

提高模型训练和收敛效率的一个方向是改进优化方法。Adam-mini是一种自适应优化方法,旨在改进基础的Adam算法。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

您应当知道的 MQL5 向导技术(第 49 部分):搭配近端政策优化的强化学习

近端政策优化是强化学习中的另一种算法,通常以网络形式以非常小的增量步幅更新政策,以便确保模型的稳定性。我们以向导汇编的智能系统来试验其作用,如同我们之前的文章一样。
preview
将 MQL5 与数据处理包集成(第 4 部分):大数据处理

将 MQL5 与数据处理包集成(第 4 部分):大数据处理

本部分探讨了将 MQL5 与强大的数据处理工具集成的高级技术,重点是高效处理大数据,以增强交易分析和决策。
preview
矩阵分解:更实用的建模

矩阵分解:更实用的建模

您可能没有注意到,矩阵建模有点奇怪,因为只指定了列,而不是行和列。在阅读执行矩阵分解的代码时,这看起来非常奇怪。如果您希望看到列出的行和列,那么在尝试分解时可能会感到困惑。此外,这种矩阵建模方法并不是最好的。这是因为当我们以这种方式对矩阵建模时,会遇到一些限制,迫使我们使用其他方法或函数,而如果以更合适的方式建模,这些方法或函数是不必要的。
preview
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
preview
非洲水牛优化(ABO)

非洲水牛优化(ABO)

本文介绍了非洲水牛优化(ABO)算法,这是一种于2015年开发的元启发式方法,基于这些动物的独特行为。文章详细描述了算法实现的各个阶段及其在解决复杂问题时的效率,这使得它成为优化领域中一个有价值的工具。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
基于主成分的特征选择与降维

基于主成分的特征选择与降维

本文深入探讨了改进型前向选择成分分析(Forward Selection Component Analysis,FSCA)算法的实现,该算法灵感源自Luca Puggini和Sean McLoone在《前向选择成分分析:算法与应用》一文中所提出的研究。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
在任何市场中获得优势(第三部分):Visa消费指数

在任何市场中获得优势(第三部分):Visa消费指数

在大数据的世界里,有数以百万计的备选数据集,它们有可能提升我们的交易策略。在这一系列文章中,我们将帮助您识别最有信息量的公开数据集。
preview
数据科学和机器学习(第 32 部分):保持您的 AI 模型更新,在线学习

数据科学和机器学习(第 32 部分):保持您的 AI 模型更新,在线学习

在瞬息万变的交易世界中,适应市场变化不仅是一种选择 — 而且是一种必要。每天都有新的形态和趋势出现,即使是最先进的机器学习模型,也难以面对不断变化的条件保持有效。在本文中,我们将探讨如何通过自动重训练,令您的模型保持相关性、及对新市场数据的响应能力。
preview
您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

您应当知道的 MQL5 向导技术(第 51 部分):配以 SAC 的强化学习

柔性参与者评论者是一种利用 3 个神经网络的强化学习算法。一名参与者网络和 2 个评论者网络。这些机器学习模型按主从伙伴关系配对,其中所建模评论者能提升参与者网络的预测准确性。在这些序列中引入 ONNX 的同时,我们探讨了如何将这些思路作为由向导汇编的智能系统的自定义信号,推进测试。
preview
适应性社会行为优化(ASBO):两阶段演变

适应性社会行为优化(ASBO):两阶段演变

我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。
preview
交易中的神经网络:受控分段(终章)

交易中的神经网络:受控分段(终章)

我们继续上一篇文章中开启的工作,使用 MQL5 构建 RefMask3D 框架。该框架旨在全面研究点云中的多模态互动和特征分析,随后基于自然语言提供的描述进行目标对象识别。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
交易中的神经网络:免掩码注意力方式预测价格走势

交易中的神经网络:免掩码注意力方式预测价格走势

在本文中,我们将讨论免掩码注意力变换器(MAFT)方法,及其在交易领域的应用。不同于传统的变换器,即处理序列时需要数据掩码,MAFT 通过消除掩码需求来优化注意力过程,显著改进了计算效率。
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
将 MQL5 与数据处理包集成(第 3 部分):增强的数据可视化

将 MQL5 与数据处理包集成(第 3 部分):增强的数据可视化

在本文中,我们将通过结合交互性、分层数据和动态元素等功能,超越基本图表,实现增强的数据可视化,使交易者能够更有效地探索趋势、形态和相关性。