有关MQL5数据分析和统计的文章

icon

许多交易者感兴趣的数学模型和概率规律的文章。数学是技术指标的基础,而且需要 统计,以便分析交易结果并开发策略。

阅读有关模糊逻辑,数字滤波器,市场概况,Kohonen 地图,神经网络和许多其它可用于交易的工具。

添加一个新的文章
最近 | 最佳
preview
开发回放系统(第 61 部分):玩转服务(二)

开发回放系统(第 61 部分):玩转服务(二)

在本文中,我们将研究使回放/模拟系统更高效、更安全地运行的修改。我也不会对那些想要充分利用这些类的人置之不理。此外,我们将探讨 MQL5 中的一个特定问题,即在使用类时降低代码性能,并解释如何解决它。
preview
数据科学和机器学习(第 29 部分):为 AI 训练目的而选择最佳外汇数据的基本技巧

数据科学和机器学习(第 29 部分):为 AI 训练目的而选择最佳外汇数据的基本技巧

在本文中,我们将深入探讨选择最具相关性、及最高品质的外汇数据,从而强化 AI 模型性能的关键层面。
preview
随机优化和最优控制示例

随机优化和最优控制示例

这款名为SMOC(可能代表随机模型最优控制)的EA,是MetaTrader 5平台上一个较为先进的算法交易系统的简单示例。它结合了技术指标、模型预测控制以及动态风险管理来做出交易决策。该EA融入了自适应参数、基于波动率的仓位规模调整以及趋势分析,以优化其在不同市场条件下的表现。
preview
您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

您应当知道的 MQL5 向导技术(第 30 部分):聚焦机器学习中的批量归一化

批量归一化是把数据投喂给机器学习算法(如神经网络)之前对数据进行预处理。始终要留意算法所用的激活类型,完成该操作。因此,我们探索在向导组装的智能系统帮助下,能够采取的不同方式,并从中受益。
preview
关于因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在市场事件预测中的应用实例

关于因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在市场事件预测中的应用实例

本文提供了一个使用因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在MQL5中实现复杂交易系统的全面指南。文章涵盖了这些方法的理论背景,详细解释了交易算法中的关键函数,并提供了实现的示例代码。
preview
开发回放系统(第 60 部分):玩转服务(一)

开发回放系统(第 60 部分):玩转服务(一)

很长一段时间以来,我们一直在研究指标,但现在是时候让服务重新工作了,看看图表是如何根据提供的数据构建的。然而,由于整个事情并没有那么简单,我们必须注意了解前方等待我们的是什么。
preview
数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

数据科学和机器学习(第 28 部分):使用 AI 预测 EURUSD 的多个期货

众多人工智能模型的惯常做法是预测单一未来值。不过,在本文中,我们将钻研运用机器学习模型的更强大技术,即预测多个未来值。这种方式被称为多步预测,它令我们不仅能够预测明天的收盘价,还可以预测后天、及更久的收盘价。通过掌握多步骤预测,交易者和数据科学家能够获得更深入的见解,并制定更明智的决策,从而显著增强他们的预测能力和策略计划。
preview
使用MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA

使用MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA

在本文中,我们将通过MQL5实现抛物线SAR趋势策略的自动化交易:打造高效的EA。该EA将根据抛物线SAR指标识别出的趋势进行交易。
preview
数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

数据科学与机器学习(第 15 部分):SVM,每个交易员工具箱中的必备工具

探索支持向量机 (SVM,Support Vector Machines) 在塑造未来交易中不可或缺的作用。本综合指南探讨了 SVM 如何提升您的交易策略,增强决策能力,并在金融市场中释放新的机会。通过实际应用、分步教程和专家见解深入了解 SVM 的世界。为自己配备必要的工具,帮助您应对现代交易的复杂性。使用 SVM 提升您的交易能力 — 这是每个交易者工具箱中的必备工具。
preview
在 MQL5 中创建交易管理员面板(第一部分):构建消息接口

在 MQL5 中创建交易管理员面板(第一部分):构建消息接口

本文讨论了为 MetaTrader 5 创建一个消息接口,旨在帮助系统管理员在平台内直接与其他交易者进行沟通。MQL5 最近与社交平台的整合使得信号能够通过不同渠道快速广播。想象一下,只需点击“是”或“否”就能确认发送信号。继续阅读以了解更多信息。
preview
威廉·江恩(William Gann)方法(第三部分):占星术是否有效?

威廉·江恩(William Gann)方法(第三部分):占星术是否有效?

行星和恒星的位置会影响金融市场吗?让我们借助统计数据和大数据,踏上一段令人兴奋的探索之旅,进入星星与股票图表交汇的世界。
preview
您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

您应当知道的 MQL5 向导技术(第 29 部分):继续学习率与 MLP

我们主要验证自适应学习率,圆满考察学习率对智能系统性能的敏感性。这些学习率旨在在训练过程中针对层中的每个参数进行自定义,故我们评估潜在收益相较于预期的性能损失。
preview
周期与外汇

周期与外汇

周期在我们的生活中具有极其重要的意义。昼夜交替、四季更迭、一周的七天以及许多其他不同性质的周期都存在于每个人的生活中。在本文中,我们将探究金融市场中的周期。
preview
数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

数据科学与机器学习(第 20 部分):算法交易洞察,MQL5 中 LDA 与 PCA 之间的较量

在剖析 MQL5 交易环境中这些强大的降维技术的应用程序时,让我们揭示它们背后的秘密。深入探讨线性判别分析(LDA)和主成分分析(PCA)的细微差别,深入了解它们对策略开发和市场分析的影响。
preview
数据科学和机器学习(第 27 部分):MetaTrader 5 中训练卷积神经网络(CNN)交易机器人 — 值得吗?

数据科学和机器学习(第 27 部分):MetaTrader 5 中训练卷积神经网络(CNN)交易机器人 — 值得吗?

卷积神经网络(CNN)以其在检测图像和视频形态方面的出色能力而闻名,其应用涵盖众多领域。在本文中,我们探讨了 CNN 在金融市场中识别有价值形态,并为 MetaTrader 5 交易机器人生成有效交易信号的潜力。我们来发现这种深度机器学习技术如何能撬动更聪明的交易决策。
preview
数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络

数据科学和机器学习(第 26 部分):时间序列预测的终极之战 — LSTM 对比 GRU 神经网络

在上一篇文章中,我们讨论了一个简单的 RNN,尽管它对理解数据中的长期依赖关系无能为力,却仍能制定可盈利策略。在本文中,我们将讨论长-短期记忆(LSTM)、门控递归单元(GRU)。引入这两个是为了克服简单 RNN 的缺点,并令其更聪慧。
preview
交易中的混沌理论(第二部分):深入探索

交易中的混沌理论(第二部分):深入探索

我们继续深入探讨金融市场的混沌理论,这一次我将考虑其对货币和其他资产分析的适用性。
preview
将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理

将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理

集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。
preview
无政府社会优化(ASO)算法

无政府社会优化(ASO)算法

本文中,我们将了解无政府社会优化(Anarchic Society Optimization,ASO)算法,并探讨一个基于无政府社会(一个摆脱中央权力和各种等级制度的异常社会交互系统)中参与者非理性与冒险行为的算法是如何能够探索解空间并避免陷入局部最优陷阱的。本文提出了一种适用于连续问题和离散问题的统一ASO结构。
preview
您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

您应当知道的 MQL5 向导技术(第 26 部分):移动平均和赫斯特(Hurst)指数

赫斯特(Hurst)指数是时间序列长期自相关度的衡量度。据了解,它捕获时间序列的长期属性,故在时间序列分析中也具有一定的分量,即使在财经/金融时间序列之外亦然。然而,我们专注于其对交易者的潜在益处,研究如何将该计量度与移动平均线配对,从而构建潜在的稳健信号。
preview
使用MQL5中的动态时间规整进行模式识别

使用MQL5中的动态时间规整进行模式识别

在本文中,我们探讨了动态时间规整(Dynamic Time Warping,DTW)作为识别金融时间序列中预测模式的一种方法。我们将深入了解其工作原理,并在纯MQL5语言中展示其实现方法。
preview
您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

您应当知道的 MQL5 向导技术(第 25 部分):多时间帧测试和交易

默认情况下,由于组装类中使用了 MQL5 代码架构,故基于多时间帧策略,且由向导组装的智能系统无法进行测试。我们探索一种绕过该限制的方式,看看搭配二次移动平均线的情况下,研究运用多时间帧策略的可能性。
preview
让新闻交易轻松上手(第3部分):执行交易

让新闻交易轻松上手(第3部分):执行交易

在本文中,我们的新闻交易EA将根据存储在数据库中的经济日历开始交易。此外,我们将改进EA的图表,以显示更多关于即将到来的经济日历事件的相关信息。
preview
动物迁徙优化(AMO)算法

动物迁徙优化(AMO)算法

本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。
preview
人工蜂巢算法(ABHA):测试与结果

人工蜂巢算法(ABHA):测试与结果

在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。
preview
您应当知道的 MQL5 向导技术(第 24 部分):移动平均

您应当知道的 MQL5 向导技术(第 24 部分):移动平均

移动平均是大多数交易者使用和理解的最常见指标。我们探讨一些在 MQL5 向导组装智能系统时可能不那么常见的可能用例。
preview
开发回放系统(第 59 部分):新的未来

开发回放系统(第 59 部分):新的未来

正确理解不同的想法可以让我们事半功倍。在本文中,我们将探讨为什么在服务与图表交互之前需要配置模板。此外,如果我们改进鼠标指标,这样我们就可以用它做更多的事情呢?
preview
人工蜂巢算法(ABHA):理论及方法

人工蜂巢算法(ABHA):理论及方法

在本文中,我们将探讨2009年开发的人工蜂巢算法(ABHA)。该算法旨在解决连续优化问题。我们将研究ABHA如何从蜂群的行为中汲取灵感,其中每只蜜蜂都有独特的角色,帮助它们更有效地寻找资源。
preview
开发回放系统(第 58 部分):重返服务工作

开发回放系统(第 58 部分):重返服务工作

在回放/模拟器服务的开发和改进暂停之后,我们正在恢复该工作。现在我们已经放弃使用终端全局变量等资源,我们将不得不完全重组其中的一些部分。别担心,我们会详细解释这个过程,这样每个人都可以关注我们服务的发展。
preview
使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

使用MQL5和Python构建自优化EA(第二部分):调整深度神经网络

机器学习模型带有各种可调节的参数。在本系列文章中,我们将探讨如何使用SciPy库来定制您的AI模型,使其适应特定的市场。
preview
开发回放系统(第 57 部分):了解测试服务

开发回放系统(第 57 部分):了解测试服务

需要注意的一点是:虽然服务代码没有包含在本文中,只会在下一篇文章中提供,但我会解释一下,因为我们将使用相同的代码作为我们实际开发的跳板。因此,请保持专注和耐心。等待下一篇文章,因为每一天都变得更加有趣。
preview
将您自己的 LLM 集成到 EA 中(第 3 部分):使用 CPU 训练自己的 LLM

将您自己的 LLM 集成到 EA 中(第 3 部分):使用 CPU 训练自己的 LLM

在人工智能飞速发展的今天,大语言模型(LLM)是人工智能的重要组成部分,所以我们应该思考如何将强大的 LLM 融入到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
基于转移熵的时间序列因果分析

基于转移熵的时间序列因果分析

在本文中,我们讨论了如何将统计因果关系应用于识别预测变量。我们将探讨因果关系与传递熵(Transfer Entropy, TE)之间的联系,并展示用于检测两个变量之间信息方向性传递的MQL5代码。
preview
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
preview
适应性社会行为优化(ASBO):两阶段演变

适应性社会行为优化(ASBO):两阶段演变

我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。
preview
S&P 500交易策略在MQL5中的实现(适合初学者)

S&P 500交易策略在MQL5中的实现(适合初学者)

了解如何利用MQL5精准预测标普500指数,结合经典技术分析以增强稳定性,并将算法与经过时间验证的原则相结合,以获得稳健的市场洞察。
preview
用Python和MQL5进行投资组合优化

用Python和MQL5进行投资组合优化

本文探讨了使用Python和MQL5结合MetaTrader 5进行高级投资组合优化的技术。文章展示了如何开发用于数据分析、资产配置和交易信号生成的算法,强调了在现代金融管理和风险缓解中数据驱动决策的重要性。
preview
您应当知道的 MQL5 向导技术(第 20 部分):符号回归

您应当知道的 MQL5 向导技术(第 20 部分):符号回归

符号回归是一种回归形式,它从最小、甚或没有假设开始,而底层模型看起来应当映射所研究数据集。尽管它可以通过贝叶斯(Bayesian)方法、或神经网络来实现,但我们看看如何使用遗传算法实现,从而有助于在 MQL5 向导中使用自定义的智能信号类。
preview
您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

您应当知道的 MQL5 向导技术(第 19 部分):贝叶斯(Bayesian)推理

贝叶斯(Bayesian)推理是运用贝叶斯定理,在获得新信息时更新概率假设。这在直观上倾向于时间序列分析中的适应性,那么我们来看看如何运用它来构建自定义类,不仅针对信号,还有资金管理、和尾随破位。
preview
特征向量和特征值:MetaTrader 5 中的探索性数据分析

特征向量和特征值:MetaTrader 5 中的探索性数据分析

在这篇文章中,我们将探索特征向量和特征值在探索性数据分析中的不同应用方式,以揭示数据中的独特关系。