关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
数据科学和机器学习(第 04 部分):预测当前股市崩盘

数据科学和机器学习(第 04 部分):预测当前股市崩盘

在本文中,我将尝试运用我们的逻辑模型,基于美国经济的基本面,来预测股市崩盘,我们将重点关注 NETFLIX 和苹果。利用 2019 年和 2020 年之前的股市崩盘,我们看看我们的模型在当前的厄运和低迷中会表现如何。
preview
神经网络变得轻松(第三十六部分):关系强化学习

神经网络变得轻松(第三十六部分):关系强化学习

在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。
preview
开发Python交易机器人(第三部分):实现基于模型的交易算法

开发Python交易机器人(第三部分):实现基于模型的交易算法

让我们继续阅读关于使用Python和MQL5开发交易机器人系列的文章。在本文中,我们将用Python中创建一个交易算法。
preview
神经网络变得轻松(第二十五部分):实践迁移学习

神经网络变得轻松(第二十五部分):实践迁移学习

在最晚的两篇文章中,我们开发了一个创建和编辑神经网络模型的工具。 现在是时候通过实践示例来评估迁移学习技术的潜在用途了。
preview
数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

数据科学与机器学习 — 神经网络(第 02 部分):前馈神经网络架构设计

在我们透彻之前,还有一些涵盖前馈神经网络的次要事情,设计就是其中之一。 针对我们的输入,看看我们如何构建和设计一个灵活的神经网络、隐藏层的数量、以及每个网络的节点。
preview
使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

使用 Python 和 MetaTrader5 python 软件包及 ONNX 模型文件进行深度学习预测和排序

本项目涉及在金融市场中使用 Python 进行基于深度学习的预测。我们将探索使用平均绝对误差(MAE)、均方误差(MSE)和R平方(R2)等关键指标测试模型性能的复杂性,并学习如何将所有内容打包到可执行文件中。我们还将制作一个 ONNX 模型文件以及它的 EA。
preview
神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

神经网络变得轻松(第十九部分):使用 MQL5 的关联规则

我们继续研究关联规则。 在前一篇文章中,我们讨论了这种类型问题的理论层面。 在本文中,我将展示利用 MQL5 实现 FP-Growth 方法。 我们还将采用真实数据测试所实现的解决方案。
preview
神经网络变得轻松(第三十三部分):分布式 Q-学习中的分位数回归

神经网络变得轻松(第三十三部分):分布式 Q-学习中的分位数回归

我们继续研究分布式 Q-学习。 今天我们将从另一个角度来看待这种方式。 我们将研究使用分位数回归来解决价格预测任务的可能性。
preview
MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句

MQL5 简介(第 2 部分):浏览预定义变量、通用函数和控制流语句

通过我们的 MQL5 系列第二部分,开启一段启迪心灵的旅程。这些文章不仅是教程,还是通往魔法世界的大门,在那里,编程新手和魔法师将团结在一起。是什么让这段旅程变得如此神奇?我们的 MQL5 系列第二部分以令人耳目一新的简洁性脱颖而出,使复杂的概念变得通俗易懂。与我们互动,我们会回答您的问题,确保您获得丰富和个性化的学习体验。让我们建立一个社区,让理解 MQL5 成为每个人的冒险。欢迎来到魔法世界!
preview
开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

开发交易机器人:Python与MQL5结合(第二部分):模型选择、创建与训练,以及Python自定义测试器

我们继续关于使用Python和MQL5开发交易机器人的系列文章。今天我们将解决模型选择、训练、测试、交叉验证、网格搜索以及模型集成的问题。
preview
神经网络实验(第 3 部分):实际应用

神经网络实验(第 3 部分):实际应用

在本系列文章中,我会采用实验和非标准方法来开发一个可盈利的交易系统,并检查神经网络是否对交易者有任何帮助。 若在交易中运用神经网络,MetaTrader 5 则可作为近乎自给自足的工具。
preview
种群优化算法:蝙蝠算法(BA)

种群优化算法:蝙蝠算法(BA)

在本文中,我将研究蝙蝠算法(BA),它在平滑函数上表现出良好的收敛性。
preview
神经网络变得轻松(第三十部分):遗传算法

神经网络变得轻松(第三十部分):遗传算法

今天我想给大家介绍一种略有不同的学习方法。 我们可以说它是从达尔文的进化论中借鉴而来的。 它可能比前面所讨论方法的可控性更低,但它允许训练不可微分的模型。
preview
数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类

数据科学与机器学习(第 09 部分):以 MQL5 平铺直叙 K-均值聚类

数据挖掘在数据科学家和交易者看来至关重要,因为很多时候,数据并非如我们想象的那么简单。 人类的肉眼无法理解数据集中的不显眼底层形态和关系,也许 K-means 算法可以帮助我们解决这个问题。 我们来发掘一下...
preview
神经网络变得轻松(第四十三部分):无需奖励函数精通技能

神经网络变得轻松(第四十三部分):无需奖励函数精通技能

强化学习的问题在于需要定义奖励函数。 它可能很复杂,或难以形式化。 为了定解这个问题,我们正在探索一些基于行动和基于环境的方式,无需明确的奖励函数即可学习技能。
preview
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
preview
数据科学与机器学习(第23部分):为什么LightGBM和XGBoost能超越许多AI模型?

数据科学与机器学习(第23部分):为什么LightGBM和XGBoost能超越许多AI模型?

这些先进的梯度提升决策树技术提供了卓越的性能和灵活性,使其成为金融建模和算法交易的理想选择。了解如何利用这些工具来优化您的交易策略、提高预测准确性,并在金融市场中获得竞争优势。
preview
数据科学与机器学习(第 02 部分):逻辑回归

数据科学与机器学习(第 02 部分):逻辑回归

数据分类对于算法交易者和程序员来说是至关重要的。 在本文中,我们将重点关注一种分类逻辑算法,它有帮于我们识别“确定或否定”、“上行或下行”、“做多或做空”。
preview
神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

神经网络变得轻松(第三十九部分):Go-Explore,一种不同的探索方式

我们继续在强化学习模型中研究环境。 在本文中,我们将见识到另一种算法 — Go-Explore,它允许您在模型训练阶段有效地探索环境。
preview
神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

神经网络变得轻松(第十五部分):利用 MQL5 进行数据聚类

我们继续研究聚类方法。 在本文中,我们将创建一个新的 CKmeans 类来实现最常见的聚类方法之一:k-均值。 在测试期间,该模型成功地识别了大约 500 种形态。
preview
使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

使用 Python 的深度学习 GRU 模型到使用 EA 的 ONNX,以及 GRU 与 LSTM 模型的比较

我们将指导您完成使用 Python 进行 DL 制作 GRU ONNX 模型的整个过程,最终创建一个用于交易的专家顾问 (EA),然后将 GRU 模型与 LSTM 模型进行比较。
preview
神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

神经网络变得轻松(第三十八部分):凭借分歧进行自我监督探索

强化学习中的一个关键问题是环境探索。 之前,我们已经见识到基于内在好奇心的研究方法。 今天我提议看看另一种算法:凭借分歧进行探索。
preview
种群优化算法:细菌觅食优化(BFO)

种群优化算法:细菌觅食优化(BFO)

大肠杆菌觅食策略激发出科学家创建 BFO 优化算法的灵感。 该算法包含原创思路和有前景的优化方法,值得深入研究。
preview
MQL5 中的矩阵和向量:激活函数

MQL5 中的矩阵和向量:激活函数

在此,我们将只讲述机器学习的一个方面 — 激活函数。 在人工神经网络中,神经元激活函数会根据一个或一组输入信号的数值,计算输出信号值。 我们将深入研究该过程的内部运作。
preview
将您自己的LLM集成到EA中(第1部分):硬件和环境部署

将您自己的LLM集成到EA中(第1部分):硬件和环境部署

随着人工智能的快速发展,大型语言模型(LLM)成为人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
将您自己的LLM集成到EA中(第2部分):环境部署示例

将您自己的LLM集成到EA中(第2部分):环境部署示例

随着人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该思考如何将强大的语言模型集成到我们的算法交易中。对大多数人来说,很难根据他们的需求对这些强大的模型进行微调,在本地部署,然后将其应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
preview
时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

时间序列挖掘的数据标签(第1部分):通过EA操作图制作具有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
数据科学与机器学习(第 03 部分):矩阵回归

数据科学与机器学习(第 03 部分):矩阵回归

这一次,我们的模型是由矩阵构建的,它更具灵活性,同时它允许我们构建更强大的模型,不仅可以处理五个独立变量,但凡我们保持在计算机的计算极限之内,它还可以处理更多变量,这篇文章肯定会是一篇阅读起来很有趣的文章。
preview
机器学习和交易中的元模型:交易订单的原始时序

机器学习和交易中的元模型:交易订单的原始时序

机器学习中的元模型:很少或无人为干预的情况下自动创建交易系统 — 模型自行决定何时以及如何进行交易。
preview
数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

数据科学和机器学习(第 18 部分):掌握市场复杂性博弈,截断型 SVD 对比 NMF

截断型奇异值分解(SVD)和非负矩阵分解(NMF)都是降维技术。它们在制定数据驱动的交易策略方面都发挥着重要作用。探索降维的艺术,揭示洞察和优化定量分析,以明智的方式航行在错综复杂的金融市场。
preview
神经网络变得轻松(第十八部分):关联规则

神经网络变得轻松(第十八部分):关联规则

作为本系列文章的延续,我们来研究无监督学习方法中的另一类问题:挖掘关联规则。 这种问题类型首先用于零售业,即超市等,来分析市场篮子。 在本文中,我们将讨论这些算法在交易中的适用性。
preview
神经网络变得轻松(第二十四部分):改进迁移学习工具

神经网络变得轻松(第二十四部分):改进迁移学习工具

在上一篇文章中,我们创建了一款用于创建和编辑神经网络架构的工具。 今天我们将继续打造这款工具。 我们将努力令其对用户更加友好。 也许可以看到,我们的主题往上更进一步。 但是,您不认为规划良好的工作空间在实现结果方面起着重要作用吗?
preview
时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集

时间序列挖掘的数据标签(第2部分):使用Python制作带有趋势标记的数据集

本系列文章介绍了几种时间序列标记方法,这些方法可以创建符合大多数人工智能模型的数据,而根据需要进行有针对性的数据标记可以使训练后的人工智能模型更符合预期设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
preview
Scikit-Learn 库中的分类模型及其导出到 ONNX

Scikit-Learn 库中的分类模型及其导出到 ONNX

在本文中,我们将探讨使用 Scikit-Learn 库中所有可用的分类模型来解决 Fisher 鸢尾花数据集的分类任务。我们将尝试把这些模型转换为 ONNX 格式,并在 MQL5 程序中使用生成的模型。此外,我们将在完整的鸢尾花数据集上比较原始模型与其 ONNX 版本的准确性。
preview
数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)

数据科学与机器学习(第 09 部分):K-最近邻算法(KNN)

这是一种惰性算法,它不是基于训练数据集学习,而是以存储数据集替代,并在给定新样本时立即采取行动。 尽管它很简单,但它能用于各种实际应用。
preview
神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

神经网络变得轻松(第四十六部分):条件导向目标强化学习(GCRL)

在本文中,我们要看看另一种强化学习方式。 它被称为条件导向目标强化学习(GCRL)。 按这种方式,代理者经过训练,可以在特定场景中达成不同的目标。
preview
神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

神经网络变得轻松(第二十九部分):优势扮演者-评价者算法

在本系列的前几篇文章中,我们见识到两种增强的学习算法。 它们中的每一个都有自己的优点和缺点。 正如在这种情况下经常发生的那样,接下来的思路是将这两种方法合并到一个算法,使用两者间的最佳者。 这将弥补它们每种的短处。 本文将讨论其中一种方法。
preview
掌握ONNX:MQL5交易者的游戏规则改变者

掌握ONNX:MQL5交易者的游戏规则改变者

深入ONNX的世界,这是一种用于交换机器学习模型的强大的开放标准格式。了解利用ONNX如何彻底改变MQL5中的算法交易,使交易员能够无缝集成尖端的人工智能模型,并将其策略提升到新的高度。揭开跨平台兼容性的秘密,学习如何在您的MQL5交易活动中释放ONNX的全部潜力。通过这篇掌握ONNX的全面指南提升您的交易游戏
preview
群体优化算法:粒子群(PSO)

群体优化算法:粒子群(PSO)

在本文中,我将研究流行的粒子群优化(PSO)算法。 之前,我们曾讨论过优化算法的重要特征,如收敛性、收敛率、稳定性、可伸缩性,并开发了一个测试台,并研究了最简单的 RNG 算法。
preview
利用 MQL5 矩阵的反向传播神经网络

利用 MQL5 矩阵的反向传播神经网络

本文讲述在 MQL5 中利用矩阵来应用反向传播算法的理论和实践。 它还提供了现成的类,以及脚本、指标和智能交易系统的示例。