成功餐饮经营者算法(SRA)
成功餐饮经营者算法(SRA)是一种受餐饮业管理原则启发的创新优化方法。与传统方法不同,SRA不会直接淘汰劣质解,而是通过融合优质解的元素对其进行改进。该算法在优化问题中展现出极具竞争力的表现,并为平衡探索与利用提供了全新视角。
台球优化算法(BOA)
BOA方法灵感源自经典的台球运动,它将寻求最优解的过程模拟为一场游戏:球体致力于落入代表最佳结果的球袋之中。本文将探讨BOA的基本原理、数学模型及其在解决各类优化问题中的效率。
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)
我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
斐波那契(Fibonacci)数列在外汇交易中的应用(第一部分):探究价格与时间的关系
市场如何遵循基于斐波那契数列的关系?在斐波那契数列中,每个后续数字都等于前两个数字之和(1, 1, 2, 3, 5, 8, 13, 21……),该数列不仅描述了兔子种群的增长情况。我们将考虑毕达哥拉斯的假设,即世间万物都遵循某种数字关系……
交易中的神经网络:基于 ResNeXt 模型的多任务学习
基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
突破机器学习的局限(第一部分):缺乏可互操作的度量指标
无论以何种形式构建可靠的人工智能(AI)交易策略,都有一种强大且普遍存在的力量,正悄然地侵蚀着我们社区的集体努力,本文提到,我们所面临的部分问题,源于对“最优实践”的盲目遵循。通过为读者提供基于现实市场的简单证据,我们说明为何必须摒弃这种做法,转而采用特定领域内的最优实践,这样一来,我们的社区才有可能重振AI的潜在力量。
您应当知道的 MQL5 向导技术(第 55 部分):配备优先经验回放的 SAC
强化学习中的回放缓冲区对于像 DQN 或 SAC 这样的无政策算法尤为重要。这样就会聚光在该记忆缓冲区的抽样过程。举例,SAC 默认选项从该缓冲区随机选择,而优先经验回放缓冲区则基于 TD 分数从缓冲区中抽样对其优调。我们回顾强化学习的重要性,并一如既往,在由向导汇编的智能系统中验证这一假设(而‘非交叉验证)。
皇冠同花顺优化(RFO)
最初的皇冠同花顺优化算法提供了一种解决优化问题的新方法,受到扑克牌原则启发,以基于扇区的方式取代了传统的遗传二进制编码算法。RFO 展现出简化的基本原理如何带来高效、且实用的优化方法。文章呈现了一份详细的算法分析和测试结果。
交易中的神经网络:层次化双塔变换器(终篇)
我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
交易中的神经网络:层次化双塔变换器(Hidformer)
我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
重构经典策略(第十四部分):高胜率交易形态
高胜率交易形态在交易圈内广为人知,但遗憾的是,其定义始终缺乏明确标准。本文将通过实证研究与算法建模,为高胜率形态构建量化定义框架,并探索其识别与运用方法。借助梯度提升树模型,我们演示如何系统性优化任意交易策略的性能,同时以更精准、可解释的方式向计算机传达交易指令的核心逻辑。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)
针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)
我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
混沌博弈优化(CGO)
本文提出了一种新型元启发式算法——混沌博弈优化算法(CGO),该算法在处理高维问题时展现出独特的保持高效率的能力。与大多数优化算法不同,CGO在问题规模扩大时不仅不会降低性能,有时甚至还会提升性能,这便是其关键特性。
将人工智能(AI)模型集成到已有的MQL5交易策略中
本主题聚焦于将训练好的人工智能(AI)模型(如长短期记忆网络(LSTM)等强化学习模型,或基于机器学习的预测模型)集成到现有的MQL5交易策略中。
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别
降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel
许多人,尤其是非程序员,发现在 MetaTrader 5 和其他程序之间传输信息非常困难。其中一个程序就是 Excel。许多人使用 Excel 作为管理和维护风险控制的一种方式。这是一个优秀的程序,易于学习,即使对于那些不是 VBA 程序员的人来说也是如此。在这里,我们将看看如何在 MetaTrader 5 和 Excel 之间建立连接(一种非常简单的方法)。
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)
在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
探索达瓦斯箱体突破策略中的高级机器学习技术
达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
接受者操作特征(ROC)曲线入门
ROC 曲线是用于评估分类器性能的图形工具。尽管 ROC 图形相对简单,但在实践中使用它们时,仍存在一些常见的误解和误区。本文旨在为那些希望理解分类器性能评估的交易者提供一份关于 ROC 图形的入门介绍。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
辩证搜索(DA)
本文介绍了辩证算法(DA),这是一种受辩证法哲学概念启发的新的全局优化方法。该算法利用了人口中独特的划分,将其分为投机思想者和实践思想者。测试表明,在低维问题上,性能令人印象深刻,高达 98%,整体效率为 57.95%。本文解释了这些度量,并详细描述了算法和不同类型函数的实验结果。
血液遗传优化算法(BIO)
我向大家介绍我的新种群优化算法——血液遗传优化算法(Blood Inheritance Optimization,BIO),该算法的灵感源自人类血型遗传系统。在该算法中,每个解都有其自身的“血型”,这一血型决定了其进化方式。正如自然界中,孩子的血型是依据特定规则遗传而来,在BIO算法中,新解通过一套遗传与变异机制来获取自身特性。
用于预测金融时间序列的生物神经元
我们将为时间序列预测建立一个生物学上正确的神经元系统。在神经网络架构中引入类似等离子体的环境创造了一种“集体智能”,其中每个神经元不仅通过直接连接,还通过长距离电磁相互作用影响系统的运行。让我们看看神经大脑建模系统在市场上的表现。
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习
软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(四) —— 测试交易策略
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
数据科学和机器学习(第 33 部分):MQL5 中的 Pandas 数据帧,为机器学习收集数据更加容易
当与机器学习模型共事时,确保用于训练、验证和测试的数据一致性必不可少。在本文中,我们将创建我们自己的 MQL5 版本 Pandas 函数库,确保使用统一方式来处理机器学习数据;这样做是为确保在 MQL5 内部和外部应用相同的数据,其中大部分发生在训练阶段。