请在Telegram上找到我们!
加入我们粉丝页
写文章
我们将支付您200 USD!
下载MetaTrader 5并自动交易

关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
MQL5 中的范畴论 (第 12 部分):秩序(Orders)

MQL5 中的范畴论 (第 12 部分):秩序(Orders)

本文是范畴论系列文章之以 MQL5 实现图论的部分,深入研讨秩序(Orders)。我们通过研究两种主要的秩序类型,实测秩序论的概念如何支持幺半群集合,从而为交易决策提供信息。
preview
神经网络变得轻松(第四十五部分):训练状态探索技能

神经网络变得轻松(第四十五部分):训练状态探索技能

在没有明确奖励函数的情况下,实用的训练技能就是分层强化学习的主要挑战之一。 以前,我们已领略了解决此问题的两种算法。 但环境研究的完整性问题仍然悬而未决。 本文演示了一种不同的技能训练方式,其可取决于系统的当前状态直接使用。
preview
神经网络变得轻松(第四十四部分):动态学习技能

神经网络变得轻松(第四十四部分):动态学习技能

在上一篇文章中,我们讲解了 DIAYN 方法,它提供了学习各种技能的算法。 获得的技能可用在各种任务。 但这些技能可能非常难以预测,而这可能令它们难以运用。 在本文中,我们要研究一种针对学习可预测技能的算法。
preview
时间序列的频域表示:功率谱

时间序列的频域表示:功率谱

在本文中,我们将讨论在频域中分析时间序列的相关方法。 构建预测模型时,强调检验时间序列功率谱的效用 在本文中,我们将讨论运用离散傅里叶变换(dft)在频域中分析时间序列获得的一些实用观点。
preview
MQL5 中的矩阵和向量:激活函数

MQL5 中的矩阵和向量:激活函数

在此,我们将只讲述机器学习的一个方面 — 激活函数。 在人工神经网络中,神经元激活函数会根据一个或一组输入信号的数值,计算输出信号值。 我们将深入研究该过程的内部运作。
preview
在类中包装 ONNX 模型

在类中包装 ONNX 模型

面向对象编程可以创建更紧凑、易于阅读和修改的代码。 在此,我们将会看到三个 ONNX 模型的示例。
preview
神经网络变得轻松(第三十七部分):分散关注度

神经网络变得轻松(第三十七部分):分散关注度

在上一篇文章中,我们讨论了在其架构中使用关注度机制的关系模型。 这些模型的具体特征之一是计算资源的密集功用。 在本文中,我们将研究于自我关注度模块内减少计算操作数量的机制之一。 这将提高模型的常规性能。
preview
MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

MQL5 中的范畴论 (第 6 部分):单态回拉和满态外推

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
如何在 MQL5 中集成 ONNX 模型的示例

如何在 MQL5 中集成 ONNX 模型的示例

ONNX(开放神经网络交换)是一种表现神经网络的开放格式。 在本文中,我们将展示如何在一个智能交易系统中同时使用两个 ONNX 模型。
preview
MQL5 中的范畴论 (第 5 部分):均衡器

MQL5 中的范畴论 (第 5 部分):均衡器

范畴论是数学的一个多样化和不断扩展的分支,直到最近才在 MQL5 社区中得到一些报道。 这些系列文章旨在探索和验证一些概念和公理,其总体目标是建立一个开放的函数库,提供洞察力,同时也希望进一步在交易者的策略开发中运用这个非凡的领域。
preview
如何在 MQL5 中使用 ONNX 模型

如何在 MQL5 中使用 ONNX 模型

ONNX(开放式神经网络交换)是一种开源的机器学习模型格式。 在本文中,我们将研究如何创建 CNN-LSTM 模型,来预测金融时间序列。 我们还将展示如何在 MQL5 智能系统中运用创建的 ONNX 模型。
preview
MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

MQL5 中的范畴论 (第 4 部分):跨度、实验、及合成

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路

数据科学和机器学习(第 14 部分):运用 Kohonen 映射在市场中寻找出路

您是否正在寻找一种可以帮助您驾驭复杂且不断变化的市场的尖端交易方法? Kohonen 映射是一种创新的人工神经网络形式,可以帮助您发现市场数据中隐藏的形态和趋势。 在本文中,我们将探讨 Kohonen 映射的工作原理,以及如何运用它们来开发更智能、更有效的交易策略。 无论您是经验丰富的交易者,还是刚刚起步,您都不想错过这种令人兴奋的新交易方式。
preview
数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

数据科学和机器学习(第 13 部分):配合主成分分析(PCA)改善您的金融市场分析

运用主成分分析(PCA)彻底革新您的金融市场分析! 发现这种强大的技术如何解锁数据中隐藏的形态,揭示潜在的市场趋势,并优化您的投资策略。 在本文中,我们将探讨 PCA 如何为分析复杂的金融数据提供新的视角,揭示传统方法会错过的见解。 发掘 PCA 应用于金融市场数据如何为您带来竞争优势,并帮助您保持领先地位。
preview
数据科学和机器学习(第 12 部分):自训练神经网络能否帮助您跑赢股市?

数据科学和机器学习(第 12 部分):自训练神经网络能否帮助您跑赢股市?

您是否厌倦了持续尝试预测股市? 您是否希望有一个水晶球来帮助您做出更明智的投资决策? 自训练神经网络可能是您一直在寻找的解决方案。 在本文中,我们将探讨这些强大的算法是否可以帮助您“乘风破浪”,并跑赢股市。 通过分析大量数据和识别形态,自训练神经网络通常可以做出比人类交易者更准确的预测。 发现如何使用这项尖端技术来最大化您的盈利,并制定更明智的投资决策。
preview
神经网络实验(第 4 部分):模板

神经网络实验(第 4 部分):模板

在本文中,我将利用实验和非标准方法开发一个可盈利的交易系统,并验证神经网络是否对交易者有任何帮助。 若在交易中运用神经网络的话, MetaTrader 5 完全可作为一款自给自足的工具。 简单的解释。
preview
神经网络变得轻松(第三十六部分):关系强化学习

神经网络变得轻松(第三十六部分):关系强化学习

在上一篇文章中讨论的强化学习模型中,我们用到了卷积网络的各种变体,这些变体能够识别原始数据中的各种对象。 卷积网络的主要优点是能够识别对象,无关它们的位置。 与此同时,当物体存在各种变形和噪声时,卷积网络并不能始终表现良好。 这些是关系模型可以解决的问题。
preview
种群优化算法:猴子算法(MA)

种群优化算法:猴子算法(MA)

在本文中,我将研究猴子优化算法(MA)。 这些动物克服困难障碍,并到达最难以接近的树顶的能力构成了 MA 算法思想的基础。
preview
将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理

将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理

这篇资料提供了以 MQL5 创建类,从而高效管理 CSV 文件的完整指南。 我们将看到打开、写入、读取、和转换数据等方法的实现。 我们还将研究如何使用它们来存储和访问信息。 此外,我们将讨论使用该类的限制和最重要的方面。 本文对于那些想要学习如何在 MQL5 中处理 CSV 文件的人来说是一个宝贵的资源。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,提供洞察力,同时希望在交易者的策略开发中进一步运用这一非凡的领域。
preview
数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论

数据科学与机器学习(第 11 部分):朴素贝叶斯(Bayes),交易中的概率论

概率交易就像走钢丝一样 — 它需要精确、平衡和对风险的敏锐理解。 在交易世界中,概率就是一切。 这是成功与失败、盈利与亏损的区别。 通过利用概率的力量,交易者可以做出明智的决策,有效地管理风险,并实现他们的财务目标。 故此,无论您是经验丰富的投资者还是交易新手,了解概率都是解锁您的交易潜能的关键。 在本文中,我们将探索令人兴奋的概率交易世界,并向您展示如何将您的交易博弈提升到一个新的水平。
preview
种群优化算法:和弦搜索(HS)

种群优化算法:和弦搜索(HS)

在本文中,我将研究和测试最强大的优化算法 — 和弦搜索(HS),其灵感来自寻找完美声音和声的过程。 那么现在什么算法在我们的评级中处于领先地位?
preview
种群优化算法:引力搜索算法(GSA)

种群优化算法:引力搜索算法(GSA)

GSA 是一种受无生命自然启发的种群优化算法。 万幸在算法中实现了牛顿的万有引力定律,对物理物体相互作用进行建模的高可靠性令我们能够观察到行星系统和星系团的迷人舞蹈。 在本文中,我将研究最有趣和最原始的优化算法之一。 还提供了空间物体运动的模拟器。
preview
衡量指标信息

衡量指标信息

机器学习已成为策略制定的流行方法。 虽然人们更强调最大化盈利能力和预测准确性,但处理用于构建预测模型的数据的重要性,仍未受到太多关注。 在本文中,我们研究依据熵的概念来评估预测模型构建的指标的适配性,如 Timothy Masters 的《测试和优调市场交易系统》一书中所述。
preview
MQL5 中的范畴论 (第 2 部分)

MQL5 中的范畴论 (第 2 部分)

范畴论是数学的一个多样化和不断扩展的分支,到目前为止,在 MQL5 社区中还相对难以发现。 这些系列文章旨在介绍和研究其一些概念,其总体目标是建立一个开放的函数库,吸引评论和研讨,同时希望在交易者的策略开发中进一步在运用这一非凡的领域。