MQL5 开发的自动交易示例的文章

icon

EA 是编程的 '巅峰',并且是每一个自动交易开发者的渴望目标。请阅读本部分中的文章,创建您自己的交易机器人。通过下面介绍的步骤,您将了解到如何创建,调试和测试自动交易系统。

这些文章不仅教导 MQL5 编程,而且也演示了如何实现交易思想和技巧。您将了解如何编写跟踪止损,如何运用资金管理,如何获取指标值,等等。

添加一个新的文章
最近 | 最佳
preview
从新手到专家:使用 MQL5 制作动画新闻标题(四) — 本地托管 AI 模型市场洞察

从新手到专家:使用 MQL5 制作动画新闻标题(四) — 本地托管 AI 模型市场洞察

在今天的讨论中,我们将探讨如何自行托管开源 AI 模型,并使用它们来生成市场洞察。这是我们持续扩展 News Headline EA 的一部分努力,引入了 AI 洞察通道,将其转变为多集成辅助工具。升级后的 EA 旨在通过日历事件、财经突发新闻、技术指标以及现在的 AI 生成的市场观点,让交易者随时了解最新动态,从而为交易决策提供及时、多样化和智能的支持。加入我们的讨论,我们将探讨实用的集成策略,以及 MQL5 如何与外部资源协作,构建强大而智能的交易工作终端。
preview
外汇套利交易:一款轻松上手的简单合成做市商机器人

外汇套利交易:一款轻松上手的简单合成做市商机器人

今天,来了解一下我的首个套利机器人——一款针对合成资产的流动性提供者(如果这么称呼它也算恰当的话)。目前,该机器人作为一个模块,在一套大型机器学习系统中成功运行,但我从云端调出了一个旧版的外汇套利EA,让我们一起来看一下,并思考如今能用它做些什么。
preview
从新手到专家:使用 MQL5 制作动画新闻标题 (三) — 指标洞察

从新手到专家:使用 MQL5 制作动画新闻标题 (三) — 指标洞察

在本文中,我们将通过引入专门的指标洞察通道来推进新闻标题EA —— 一个紧凑的图表显示,显示由RSI、MACD、随机震荡指标和 CCI 等流行指标生成的关键技术信号。这种方法消除了 MetaTrader 5 终端上多个指标子窗口的需要,使您的工作空间保持干净高效。通过利用 MQL5 API 在后台访问指标数据,我们可以使用自定义逻辑实时处理和可视化市场洞察。加入我们,探索如何在 MQL5 中操纵指标数据,以创建一个智能且节省空间的滚动洞察系统,所有这些都在您的交易图表上的一个水平通道内。
preview
从新手到专家:使用 MQL5 制作动画新闻标题(二)

从新手到专家:使用 MQL5 制作动画新闻标题(二)

今天,我们又向前迈进了一步,整合了一个外部新闻 API 作为我们的 News Headline EA 的头条新闻来源。在这个阶段,我们将探索各种新闻来源 —— 包括成熟的和新兴的 —— 并学习如何有效地访问它们的 API。我们还将介绍如何将检索到的数据解析成适合在我们的 EA 交易中显示的格式。加入讨论,我们将探索直接在图表上访问新闻标题和经济日历的好处,所有这些都在一个紧凑、不干扰用户的界面中。
preview
交易中的神经网络:二维连接空间模型(Chimera)

交易中的神经网络:二维连接空间模型(Chimera)

本文将探讨创新的 Chimera 框架:利用神经网络分析多元时间序列的二维状态空间模型。该方法具有高精度和低计算成本,优于传统方式和变换器架构。
preview
从新手到专家:使用 MQL5 制作动画新闻标题(一)

从新手到专家:使用 MQL5 制作动画新闻标题(一)

在 MetaTrader 5 终端上进行交易时,新闻可访问性是一个关键因素。虽然有很多新闻 API 可用,但许多交易者在访问这些 API 并将其有效集成到他们的交易环境中时仍面临挑战。在本次讨论中,我们的目标是开发一种简化的解决方案,将新闻直接呈现在图表上 —— 也就是最需要新闻的地方。我们将通过构建一个新闻标题 EA 来实现这一目标,该 EA 可以监控并显示来自 API 源的实时新闻更新。
preview
MQL5 简介(第 17 部分):构建趋势反转 EA 交易

MQL5 简介(第 17 部分):构建趋势反转 EA 交易

本文教初学者如何在 MQL5 中构建一个基于图表形态识别的 EA 交易系统,该系统利用趋势线突破和反转进行交易。通过学习如何动态检索趋势线值并将其与价格走势进行比较,读者将能够开发出能够识别和交易图表形态(如上升和下降趋势线、通道、楔形、三角形等)的 EA 交易。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

交易中的神经网络:基于 ResNeXt 模型的多任务学习(终篇)

我们继续探索基于 ResNeXt 的多任务学习框架,其特征是模块化、高计算效率、及识别数据中稳定形态的能力。使用单一编码器和专用“头”可降低模型过度拟合风险,提升预测品质。
preview
交易中的神经网络:基于 ResNeXt 模型的多任务学习

交易中的神经网络:基于 ResNeXt 模型的多任务学习

基于 ResNeXt 的多任务学习框架,优化了金融数据分析,可参考其高维度、非线性、和时间依赖性。使用分组卷积和专用头,令模型能有效从输入数据中提取关键特征。
preview
从新手到专家:自动几何分析系统

从新手到专家:自动几何分析系统

几何形态为交易者提供了一种简洁的方式来解读价格走势。许多分析师手工绘制趋势线、矩形和其他形状,然后根据他们看到的形态做出交易决策。在本文中,我们探索了一种自动化的替代方案:利用 MQL5 来检测和分析最流行的几何形态。我们将分解方法论,讨论实现细节,并强调自动形态识别如何提高交易者的市场洞察力。
preview
MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

MQL5交易工具(第二部分):为交互式交易助手添加动态视觉反馈

本文通过引入拖拽面板功能和悬停交互效果,对交易助手工具进行全面升级,使界面操作更直观且响应更迅速。我们优化了工具的实时订单验证机制,确保交易参数能根据市场价格动态校准。同时,我们通过回测验证了这些改进的可靠性。
preview
MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单

MQL5 中的高级订单执行算法:TWAP、VWAP 和冰山订单

MQL5 框架通过统一的执行管理器和性能分析器,将机构级执行算法(TWAP、VWAP、冰山订单)带给散户交易者,从而实现更流畅、更精确的订单切片和分析。
preview
MQL5交易工具(第一部分):构建交互式可视化挂单交易助手工具

MQL5交易工具(第一部分):构建交互式可视化挂单交易助手工具

本文将介绍如何使用MQL5开发一款交互式交易助手工具,旨在简化外汇交易中的挂单操作流程。我们首先阐述其核心设计理念:通过用户友好的图形界面(GUI),实现图表上直观设置入场点、止损位和止盈位的功能。此外,本文将详细说明MQL5代码实现过程及回测验证方法,确保工具的可靠性,并为后续高级功能开发奠定基础。
preview
通过原始代码优化和调整来改进回测结果

通过原始代码优化和调整来改进回测结果

通过优化逻辑、细化计算和减少执行时间来提高回测精度,从而增强 MQL5 代码。微调参数,优化循环,消除低效,以获得更好的性能。
preview
在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

在交易图表上通过资源驱动的双三次插值图像缩放技术创建动态 MQL5 图形界面

本文探讨了动态 MQL5 图形界面,利用双三次插值技术在交易图表上实现高质量的图像缩放。我们详细介绍了灵活的定位选项,支持通过自定义偏移量实现动态居中或位置定位。
preview
MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略

MQL5交易策略自动化(第十六部分):基于结构突破(BoS)价格行为的午夜区间突破策略

本文将介绍如何在MQL5中实现午夜区间突破结合结构突破(BoS)价格行为策略自动化,并详细说明突破检测与交易执行的代码逻辑。我们为入场、止损和止盈设定了精确的风险参数。包含回测与优化方法,助力实战交易。
preview
MQL5 简介(第 14 部分):构建自定义指标的初学者指南(三)

MQL5 简介(第 14 部分):构建自定义指标的初学者指南(三)

学习如何使用图表对象在 MQL5 中构建谐波形态指标。了解如何检测波动点、应用斐波那契回撤线以及自动识别形态。
preview
MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式

MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式

本文探讨了在 MQL5 中实现谐波形态的自动化,详细介绍了如何在 MetaTrader 5 图表上对其进行检测和可视化。我们将实现一个EA,用于识别摆动点,验证基于斐波那契比率的形态,并通过清晰的图形标注执行交易。文章最后还提供了关于回测和优化程序的指导,以助力有效的交易。
preview
交易中的神经网络:层次化双塔变换器(终篇)

交易中的神经网络:层次化双塔变换器(终篇)

我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
preview
MQL5 交易工具包(第 8 部分):如何在代码库中实现和使用历史管理 EX5 库

MQL5 交易工具包(第 8 部分):如何在代码库中实现和使用历史管理 EX5 库

在本系列的最后一篇文章中,我们将探讨如何轻松地将历史管理 EX5 库导入到 MQL5 源代码中,以处理 MetaTrader 5 账户中的交易历史记录。通过 MQL5 中简单的单行函数调用,可以高效管理和分析交易数据。此外,您还将学习如何创建不同的交易历史分析脚本,并开发基于价格的 EA 交易,作为实际用例示例。该示例 EA 利用价格数据和历史管理 EX5 库做出明智的交易决策、调整交易量,并根据先前已平仓的交易实施恢复策略。
preview
用于MetaTrader 5的WebSocket:借助Windows API实现异步客户端连接

用于MetaTrader 5的WebSocket:借助Windows API实现异步客户端连接

本文详细介绍了开发一款自定义动态链接库的过程,该库旨在为MetaTrader程序提供异步WebSocket客户端连接功能。
preview
在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)

在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)

本文详细介绍如何利用第一篇开发的状态检测器,构建一个自适应的智能交易系统(MarketRegimeEA)。该系统能够根据趋势、震荡或高波动市场,自动切换交易策略与风险参数。文中涵盖了实用的参数优化、状态过渡处理以及多时间周期指标的应用。
preview
在 MQL5 中创建交易管理员面板(第十部分):基于外部资源的界面

在 MQL5 中创建交易管理员面板(第十部分):基于外部资源的界面

今天,我们将深入挖掘 MQL5 的潜力,利用外部资源(例如 BMP 格式的图片)为交易管理面板打造独具风格的主界面。文中演示的策略在打包多种资源(包括图片、声音等)以实现高效分发时尤为实用。欢迎随我们一起探讨,如何利用这些功能为我们的 New_Admin_Panel EA 实现现代、美观的界面设计。
preview
MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)

本文将指导您从头开始构建自定义 Heikin Ashi 指标,并演示如何将自定义指标集成到 EA 中。它涵盖了指标计算、交易执行逻辑和风险管理技术,以增强自动化交易策略。
preview
交易中的神经网络:层次化双塔变换器(Hidformer)

交易中的神经网络:层次化双塔变换器(Hidformer)

我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
preview
使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备

在本文中,我们通过将经济日历数据作为非实盘分析资源嵌入到MQL5交易系统中,为策略测试做好准备。我们实现了按时间、货币和影响程度加载和筛选事件的功能,并在策略测试器中验证其有效性。这使得基于新闻事件的策略能够进行高效的回测。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)

针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
preview
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)

我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
preview
交易中的神经网络:配备概念强化的多智代系统(终篇)

交易中的神经网络:配备概念强化的多智代系统(终篇)

我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
preview
交易中的神经网络:配备概念强化的多智代系统(FinCon)

交易中的神经网络:配备概念强化的多智代系统(FinCon)

我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(终篇)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(终篇)

我们持续开发 FinAgent 算法,其是一款多模态金融交易智代,旨在分析多模态市场动态数据,以及历史交易形态。
preview
交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

交易中的神经网络:针对金融市场的多模态、扩增工具型智代(FinAgent)

我们邀请您来探索 FinAgent,一个多模态金融交易智代框架,设计用来分析反映市场动态和历史交易形态的各种数据。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
交易中的神经网络:具有层化记忆的智代

交易中的神经网络:具有层化记忆的智代

模仿人类认知过程的层化记忆方式令复杂金融数据的处理、以及适配新信号成为可能,因此在动态市场中提升投资决策的有效性。
preview
创建动态多货币对EA(第二部分):投资组合多元化与优化

创建动态多货币对EA(第二部分):投资组合多元化与优化

投资组合多元化与优化旨在将投资有策略地分散配置于多种资产之上,在最小化风险的同时,依据风险调整后的绩效指标挑选出最理想的资产组合,从而实现回报最大化。
preview
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别

降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
preview
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

交易中的神经网络:具有预测编码的混合交易框架(StockFormer)

在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
preview
让手动回测变得简单:为MQL5策略测试器构建自定义工具包

让手动回测变得简单:为MQL5策略测试器构建自定义工具包

在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。