
交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。

关于因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在市场事件预测中的应用实例
本文提供了一个使用因果网络分析(Causality Network Analysis,CNA)和向量自回归(Vector Autoregression,VAR)模型在MQL5中实现复杂交易系统的全面指南。文章涵盖了这些方法的理论背景,详细解释了交易算法中的关键函数,并提供了实现的示例代码。

在MQL5中实现基于抛物线转向指标(Parabolic SAR)和简单移动平均线(SMA)的快速交易策略算法
在本文中,我们将在MQL5中开发一个快速交易EA,利用抛物线SAR和简单移动平均线(SMA)指标来创建一个响应迅速的交易策略。我们详细介绍了该策略的实施过程,包括指标的使用、信号的生成以及测试和优化过程。

MetaTrader 中的 Multibot(第二部分):改进的动态模板
在开发上一篇文章的主题时,我决定创建一个更灵活、功能更强大的模板,该模板具有更大的功能,可以有效地用于自由职业,也可以作为开发多货币和多时段 EA 的基础,并能够与外部解决方案集成。

重塑经典策略(第六部分):多时间框架分析
在这一系列文章中,我们重新审视经典策略,看看是否可以利用人工智能(AI)对其进行改进。在本文中,我们将研究流行的多时间框架分析策略,以判断该策略是否可以通过人工智能得到增强。

使用 SMA 和 EMA 自动优化止盈和指标参数的示例
本文介绍了一种用于外汇交易的复杂 EA 交易,它能够将机器学习与技术分析相结合。它专注于交易苹果股票,具有自适应优化、风险管理和多策略的特点。回溯测试显示出良好的结果,盈利能力较高,但也有显著的回撤,表明还有进一步改进的潜力。

创建 MQL5-Telegram 集成 EA 交易 (第二部分):从 MQL5 发送信号到 Telegram
在本文中,我们创建了一个 MQL5-Telegram 集成 EA 交易,将移动平均线交叉信号发送到 Telegram。我们详细介绍了从移动平均线交叉生成交易信号的过程,在 MQL5 中实现必要的代码,并确保集成无缝工作。结果是系统可以直接向您的 Telegram 群聊提供实时交易提醒。

重构经典策略(第五部分):基于USDZAR的多品种分析
在本系列文章中,我们重新审视经典策略,看看是否可以使用人工智能来改进这些策略。在今天的文章中,我们将研究一种使用一篮子具有相关性的金融产品来进行多品种分析的流行策略,我们将重点关注货币对 USDZAR。

重塑经典策略(第四部分):标普500指数与美国国债
在本系列文章中,我们使用现代算法分析经典交易策略,以确定是否可以利用人工智能改进这些策略。在今天的文章中,我们将重新审视一种利用标普500指数与美国国债之间关系的经典交易方法。

交易中的神经网络:时空神经网络(STNN)
在本文中,我们将谈及使用时空变换来有效预测即将到来的价格走势。为了提高 STNN 中的数值预测准确性,提出了一种连续注意力机制,令模型能够更好地参考数据的重要方面。

创建 MQL5-Telegram 集成 EA 交易 (第一部分):从 MQL5 发送消息到 Telegram
在本文中,我们在 MQL5 中创建一个 EA 交易,以使用机器人向 Telegram 发送消息。我们设置必要的参数,包括机器人的 API 令牌和聊天 ID,然后通过执行 HTTP POST 请求来传递消息。之后,我们将处理响应以确保成功传达,并排除故障时出现的任何问题。这确保我们能够通过创建的机器人将消息从 MQL5 发送到 Telegram。

神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。

MQL5 简介(第 8 部分):初学者构建 EA 交易系统指南(二)
本文解决了MQL5论坛中常见的初学者问题,并演示了实用的解决方案。学习执行基本任务,如买卖、获取烛形价格以及管理自动交易方面,如交易限额、交易期限和盈亏阈值。获取分步指导,以增强您对 MQL5 中这些概念的理解和实现。

神经网络变得简单(第 95 部分):降低变换器模型中的内存消耗
基于变换器架构的模型展现出高效率,但由于在训练阶段、及运行期间都资源成本高昂,故它们的使用变得复杂。在本文中,我提议领略那些能够降低此类模型内存占用的算法。

交易中的神经网络:用于时间序列预测的轻量级模型
轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。

神经网络变得简单(第 94 部分):优化输入序列
在处理时间序列时,我们始终按其历史序列使用源数据。但这是最好的选项吗?有一种观点认为,改变输入数据顺序将提高训练模型的效率。在本文中,我邀请您领略其中一种优化输入序列的方法。

基于套接字(Sockets)的Twitter情绪分析
这种创新的交易机器人将 MetaTrader 5 与 Python 结合,利用实时社交媒体情绪分析为自动化交易决策提供支持。通过分析与特定金融工具相关的 Twitter 情绪,该机器人将社交媒体趋势转化为可操作的交易信号。它采用客户端-服务器架构,并通过套接字通信实现无缝交互,将 MT5 的交易能力与 Python 的数据处理能力完美结合。该系统展示了将量化金融与自然语言处理相结合的潜力,提供了一种利用替代数据源的尖端算法交易方法。尽管显示出巨大潜力,但该机器人也突显了未来改进的方向,包括采用更先进的情绪分析技术以及改进风险管理策略。

在 MQL5 中创建交互式图形用户界面(第 2 部分):添加控制和响应
通过动态功能增强 MQL5 图形用户界面(GUI)面板,可以大大改善用户的交易体验。通过整合互动元素、悬停效果和实时数据更新,该面板成为现代交易者的强大工具。

神经网络变得简单(第 92 部分):频域和时域中的自适应预测
FreDF 方法的作者通过实验证实了结合频域和时域进行预测的优势。不过,权重超参数的使用对于非稳态时间序列并非最优。在本文中,我们将领略结合频域和时域预测的自适应方法。

结合基本面和技术分析策略在MQL5中的实现(适合初学者)
在本文中,我们将讨论如何将趋势跟踪和基本面原则无缝整合到一个EA中,以构建一个更加稳健的交易策略。本文将展示任何人都可以轻松上手,使用MQL5构建定制化交易算法的过程。

在MetaTrader 5中实现基于EMA交叉的级联订单交易策略
本文介绍一个基于EMA交叉信号的自动交易算法,该算法适用于MetaTrader 5平台。文章详细阐述了在MQL5中开发一个EA所需的方方面面,以及在MetaTrader 5中进行测试的过程——从分析价格区间行为到风险管理。

神经网络变得简单(第 90 部分):时间序列的频率插值(FITS)
通过研究 FEDformer 方法,我们打开了时间序列频域表述的大门。在这篇新文章中,我们将继续一开始的主题。我们将研究一种方法,据其我们不仅能进行分析,还可以预测特定区域的后续状态。

重塑经典策略(第三部分):预测新高与新低
在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。