MQL5 中的交易策略自动化(第十五部分):可视化价格行为的谐波形态模式
本文探讨了在 MQL5 中实现谐波形态的自动化,详细介绍了如何在 MetaTrader 5 图表上对其进行检测和可视化。我们将实现一个EA,用于识别摆动点,验证基于斐波那契比率的形态,并通过清晰的图形标注执行交易。文章最后还提供了关于回测和优化程序的指导,以助力有效的交易。
交易中的神经网络:层次化双塔变换器(终篇)
我们继续构建 Hidformer 层次化双塔变换器模型,专为分析和预测复杂多变量时间序列而设计。在本文中,我们会把早前就开始的工作推向逻辑结局 — 我们将在真实历史数据上测试模型。
MQL5 交易工具包(第 8 部分):如何在代码库中实现和使用历史管理 EX5 库
在本系列的最后一篇文章中,我们将探讨如何轻松地将历史管理 EX5 库导入到 MQL5 源代码中,以处理 MetaTrader 5 账户中的交易历史记录。通过 MQL5 中简单的单行函数调用,可以高效管理和分析交易数据。此外,您还将学习如何创建不同的交易历史分析脚本,并开发基于价格的 EA 交易,作为实际用例示例。该示例 EA 利用价格数据和历史管理 EX5 库做出明智的交易决策、调整交易量,并根据先前已平仓的交易实施恢复策略。
用于MetaTrader 5的WebSocket:借助Windows API实现异步客户端连接
本文详细介绍了开发一款自定义动态链接库的过程,该库旨在为MetaTrader程序提供异步WebSocket客户端连接功能。
在 MQL5 中构建自定义市场状态检测系统(第二部分):智能交易系统(EA)
本文详细介绍如何利用第一篇开发的状态检测器,构建一个自适应的智能交易系统(MarketRegimeEA)。该系统能够根据趋势、震荡或高波动市场,自动切换交易策略与风险参数。文中涵盖了实用的参数优化、状态过渡处理以及多时间周期指标的应用。
在 MQL5 中创建交易管理员面板(第十部分):基于外部资源的界面
今天,我们将深入挖掘 MQL5 的潜力,利用外部资源(例如 BMP 格式的图片)为交易管理面板打造独具风格的主界面。文中演示的策略在打包多种资源(包括图片、声音等)以实现高效分发时尤为实用。欢迎随我们一起探讨,如何利用这些功能为我们的 New_Admin_Panel EA 实现现代、美观的界面设计。
MQL5 简介(第 13 部分):构建自定义指标的初学者指南(二)
本文将指导您从头开始构建自定义 Heikin Ashi 指标,并演示如何将自定义指标集成到 EA 中。它涵盖了指标计算、交易执行逻辑和风险管理技术,以增强自动化交易策略。
交易中的神经网络:层次化双塔变换器(Hidformer)
我们邀请您来领略层次化双塔变换器(Hidmer)框架,其专为时间序列预测和数据分析而开发。框架作者提出了若干变换器架构改进方案,其成果提高了预测准确性、并降低了计算资源消耗。
使用MQL5经济日历进行交易(第七部分):基于资源型新闻事件分析的策略测试准备
在本文中,我们通过将经济日历数据作为非实盘分析资源嵌入到MQL5交易系统中,为策略测试做好准备。我们实现了按时间、货币和影响程度加载和筛选事件的功能,并在策略测试器中验证其有效性。这使得基于新闻事件的策略能够进行高效的回测。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(终篇)
针对加密货币交易的 MacroHFT 框架采用上下文感知强化学习和记忆,以便适应动态市场条件。在本文末尾,我们将在真实历史数据上测试所实现的方式,从而评估其有效性。
交易中的神经网络:针对加密货币市场的记忆扩充上下文感知学习(MacroHFT)
我邀请您探索 MacroHFT 框架,该框架应用了上下文感知强化学习和记忆,利用宏观经济数据和自适应智代改进加密货币高频交易决策。
交易中的神经网络:配备概念强化的多智代系统(终篇)
我们继续实现 FinCon 框架作者提议的方式。FinCon 是一款基于大语言模型(LLM)的多智代系统。今天,我们将实现必要的模块,并在真实历史数据上全面测试模型。
交易中的神经网络:配备概念强化的多智代系统(FinCon)
我们邀您探索 FinCon 框架,这是一款基于大语言模型(LLM)的多智代系统。该框架利用概念性词汇强化来提升决策制定和风险管理,能在多种金融任务中有高效表现。
交易中的神经网络:具有层化记忆的智代(终篇)
我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
创建动态多货币对EA(第二部分):投资组合多元化与优化
投资组合多元化与优化旨在将投资有策略地分散配置于多种资产之上,在最小化风险的同时,依据风险调整后的绩效指标挑选出最理想的资产组合,从而实现回报最大化。
使用Python和MQL5进行特征工程(第四部分):基于UMAP回归的K线模式识别
降维技术被广泛用于提升机器学习模型的性能。让我们来讨论一项被称为“统一流形逼近与投影”的相对较新的技术(UMAP)。这项新技术的开发旨在针对性地克服传统方法在数据中产生伪影和失真的局限性。UMAP是一种强大的降维技术,它能以一种新颖而有效的方式帮助我们将相似的K线进行分组,从而降低在样本外数据上的错误率,并提升我们的交易表现。
交易中的神经网络:具有预测编码的混合交易框架(StockFormer)
在本文中,我们将讨论混合交易系统 StockFormer,其结合了预测编码和强化学习(RL)算法。该框架用到 3 个变换器分支,集成了多样化多头注意力(DMH-Attn)机制,改进了原版的注意力模块,采用多头前馈模块,能够捕捉不同子空间中的多元化时间序列形态。
让手动回测变得简单:为MQL5策略测试器构建自定义工具包
在本文中,我们设计了一个自定义的MQL5工具包,用于在策略测试器中轻松进行手动回测。我们将解释其设计与实现方案,重点介绍交互式交易控制功能。然后,我们将展示如何使用它来有效地测试交易策略。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)
在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇
我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
百年数学函数如何革新您的交易策略?
本文聚焦R德马赫(Rademacher)函数与沃尔什(Walsh)函数。探讨如何将这两类诞生于20世纪初的数学工具应用于金融时间序列分析,并揭示其在交易策略中的创新应用场景。
在MQL5中创建交易管理面板(第九部分):代码组织(5):分析面板(AnalyticsPanel)类
在本文中,我们将探讨如何获取实时市场数据和交易账户信息,执行各种计算,并将结果展示在自定义面板上。为此,我们将深入开发一个分析面板(AnalyticsPanel)类,该类封装了所有这些功能,包括面板创建功能。这项工作是我们正在进行的新建管理面板智能交易系统(EA)扩展工作的一部分,旨在运用模块化设计原则和代码组织的最佳实践来引入高级功能。
MQL5自动化交易策略(第十四部分):基于MACD-RSI统计方法的交易分层策略
本文将介绍一种结合MACD和RSI指标与统计方法的交易分层策略,通过MQL5实现动态自动化交易。我们将探讨这种级联式策略的架构设计,通过关键代码段详解其实现方式,并指导读者如何进行回测以优化策略表现。最后,我们将总结该策略的潜力,并为自动化交易的进一步优化奠定基础。
在 MQL5 中创建交易管理面板(第九部分):代码组织(三):通信模块
欢迎参与本次深度讨论,我们将揭示 MQL5 界面设计的最新进展,着重介绍重新设计的通信面板,并继续我们关于使用模块化原则构建新管理面板的系列文章。我们将逐步开发 CommunicationsDialog 类,并详细解释如何从 Dialog 类进行继承。此外,在我们的开发过程中,还将利用数组(arrays)和 ListView 类。获取可行的方案,以提升您的 MQL5 开发技能——请阅读本文,并在评论区加入讨论!
MQL5 简介(第 11 部分):MQL5 中使用内置指标的初学者指南(二)
了解如何使用 RSI、MA 和随机震荡指标等多种指标在 MQL5 中开发 EA 交易来检测隐藏的看涨和看跌背离。学习实施有效的风险管理并通过详细的示例和完整注释的源代码实现交易自动化,以达到教育目的!
MQL5交易管理面板开发(第九部分):代码组织(4):交易管理面板类
本文探讨我们在New_Admin_Panel智能交易系统(EA)中更新交易管理面板(TradeManagementPanel)。此次更新通过引入内置类组件,显著提升了面板的用户友好性,为交易者提供了直观的交易管理界面。其内置交易按钮,可一键开仓,并提供管理现有持仓与挂单的控制选项。核心亮点是集成的风险管理功能——可直接在界面内设置止损与止盈值。此次更新优化了大型程序的代码组织方式,并简化了对终端中常见繁杂订单管理工具的访问。
在 MQL5 中自动化交易策略(第 13 部分):构建头肩形态交易算法
在本文中,我们将自动化 MQL5 中的头肩形态。我们分析其架构,实现一个用于检测和交易该形态的 EA,并对结果进行回测。这个过程揭示了一个具有改进空间的实用交易算法。
在 MQL5 中构建自优化EA(第六部分):自适应交易规则(二)
本文探讨了如何优化 RSI 的水平和周期,以获得更好的交易信号。我们介绍了估算最优 RSI 值的方法,并使用网格搜索和统计模型来自动选择周期。最后,我们在 MQL5 中实现了该解决方案,同时利用 Python 进行分析。我们的方法力求务实和直接,旨在以简单的方式帮助您解决潜在复杂的问题。
MQL5交易策略自动化(第十二部分):实现缓解型订单块(MOB)策略
在本文中,我们将构建一个MQL5交易系统,可针对“聪明资金”(Smart Money)交易自动检测订单块。我们将阐述该策略的规则,在MQL5中实现其逻辑,并融入风险管理以实现有效的交易执行。最后,我们将对该系统进行回测,以评估其表现,并对其进行优化以获得最优结果。
MQL5自动化交易策略(第十一部分):开发多层级网格交易系统
在本文中,我们将使用MQL5开发一款多层级网格交易系统EA,重点探讨网格交易策略背后的架构与算法设计。我们将研究多层网格逻辑的实现方式以及应对不同市场状况的风险管理技术。最后,我们将提供详尽的解释和实用技巧,指导您完成自动化交易系统的构建、测试与优化。
价格行为分析工具包开发(第十六部分):引入四分之一理论(2)—— 侵入探测器智能交易系统(EA)
在前一篇文章中,我们介绍了一个名为“四分位绘图脚本”的简单脚本。现在,我们在此基础上更进一步,创建一个用于监控的智能交易系统(EA),以跟踪这些四分位水平,并对这些价位可能引发的市场反应进行监督。请随我们一同探索在本篇文章中开发区域检测工具的过程。
MQL5 交易策略自动化(第十部分):开发趋势盘整动量策略
在本文中,我们将基于MQL5开发趋势盘整动量策略EA。我们将结合双移动平均线交叉与 RSI 和 CCI 动量过滤器来生成交易信号。我们还将对EA进行回测,以及为提升其在真实交易环境下的表现而进行的优化。
MQL5自动化交易策略(第九部分):构建亚洲盘突破策略的智能交易系统(EA)
在本文中,我们将在MQL5中开发一款适用于亚洲盘突破策略的智能交易系统(EA),用来计算亚洲时段的高低价以及使用移动平均线(MA)进行趋势过滤。同时实现动态对象样式、用户自定义时间输入和完善的风险管理。最后演示回测与优化技术,进一步打磨策略表现。
价格行为分析工具包开发(第十五部分):引入四分位理论(1)——四分位绘图脚本
支撑位与阻力位是预示潜在趋势反转和延续的关键价位。尽管识别这些价位颇具挑战性,但一旦精准定位,您便能从容应对市场波动。如需进一步辅助,请参阅本文介绍的四分位绘图工具,该工具可帮助您识别主要及次要支撑位与阻力位。
使用MQL5经济日历进行交易(第六部分):利用新闻事件分析和倒计时器实现交易入场自动化
在本文中,我们将借助MQL5经济日历实现交易入场自动化,具体方法是应用用户自定义的筛选条件和时差偏移量来识别符合条件的新闻事件。我们通过对比预测值和前值,来确定是开立买入(BUY)单还是卖出(SELL)订单。动态倒计时器会显示距离新闻发布剩余的时间,并且在完成一笔交易后自动重置。