关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
基于Python和MQL5的特征工程(第二部分):价格角度

基于Python和MQL5的特征工程(第二部分):价格角度

在MQL5论坛上,有许多帖子询问如何计算价格变化的斜率。本文将展示一种计算任意交易市场中价格变化所形成角度的可行方法。此外,我们还将探讨为这项新特征工程投入额外精力和时间是否值得。我们将研究价格斜率是否能在预测M1时间框架下的USDZAR货币对时,提高我们人工智能(AI)模型的准确性。
preview
MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

MQL5 中的范畴论 (第 9 部分):幺半群(Monoid)— 动作

本文是以 MQL5 实现范畴论系列的延续。 在这里,我们继续将“幺半群 — 动作”当为幺半群变换的一种手段,如上一篇文章所涵盖的内容,从而增加了应用。
preview
数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

数据科学和机器学习(第 19 部分):利用 AdaBoost 为您的 AI 模型增压

AdaBoost,一个强力的提升算法,设计用于提升 AI 模型的性能。AdaBoost 是 Adaptive Boosting 的缩写,是一种复杂的融合学习技术,可无缝集成较弱的学习器,增强它们的集体预测强度。
preview
利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

利用Python进行季节性过滤并为EA的ONNX深度学习模型选择时间周期

在利用Python构建深度学习模型时,我们能否从季节性因素中获益?为ONNX模型过滤数据是否有助于获得更好的结果?我们应该使用哪个时间周期?本文将全面探讨这些问题。
preview
大气云模型优化(ACMO):理论

大气云模型优化(ACMO):理论

本文致力于介绍一种元启发式算法——大气云模型优化(ACMO)算法,该算法通过模拟云层的行为来解决优化问题。该算法利用云层的生成、移动和传播的原理,适应解空间中的“天气条件”。本文揭示了该算法如何通过气象模拟在复杂的可能性空间中找到最优解,并详细描述了ACMO运行的各个阶段,包括“天空”准备、云层的生成、云层的移动以及水的集中。
preview
您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

您应当知道的 MQL5 向导技术(第 10 部分):非常规 RBM

限制性玻尔兹曼(Boltzmann)机处于基本等级,是一个两层神经网络,擅长通过降维进行无监督分类。我们取其基本原理,并检验如果我们重新设计和训练它,我们是否可以得到一个实用的信号滤波器。
preview
因果推断中的时间序列聚类

因果推断中的时间序列聚类

在机器学习中,聚类算法是重要的无监督学习算法,它们可以将原始数据划分为具有相似观测值的组。利用这些组,可以分析特定聚类的市场情况,使用新数据寻找最稳定的聚类,并进行因果推断。本文提出了一种在Python中进行时间序列聚类的原创方法。
preview
您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

您应当知道的 MQL5 向导技术(第 22 部分):条件化生成式对抗网络(cGAN)

生成式对抗网络是一对神经网络,它们彼此相互训练,以便结果更精准。我们采用这些网络的条件化类型,作为我们正在寻找的可选项,应用于智能信号类之内预测金融时间序列。
preview
基于三维反转形态的算法交易

基于三维反转形态的算法交易

在三维K线上探索自动化交易的新世界。基于多维价格K线的交易机器人是什么样的?三维K线中的“黄色”簇群能否预测趋势反转?多维交易是什么样的?
preview
黑洞算法(BHA)

黑洞算法(BHA)

黑洞算法(BHA)利用黑洞引力原理来优化解。在本文中,我们将考察 BHA 如何在避免局部极端情况的同时,吸引最佳解,以及为什么该算法已成为解决复杂问题的强大工具。学习简单的思路如何在优化世界带来令人印象深刻的结果。
preview
种群优化算法:二进制遗传算法(BGA)。第 II 部分

种群优化算法:二进制遗传算法(BGA)。第 II 部分

在本文中,我们将继续研究二进制遗传算法(BGA),它模拟自然界生物遗传物质中发生的自然过程。
preview
交易中的神经网络:点云的层次化特征学习

交易中的神经网络:点云的层次化特征学习

我们继续研究从点云提取特征的算法。在本文中,我们将领略提升 PointNet 方法效率的机制。
preview
神经网络变得简单(第 74 部分):自适应轨迹预测

神经网络变得简单(第 74 部分):自适应轨迹预测

本文介绍了一种相当有效的多个体轨迹预测方法,其可适配各种环境条件。
preview
神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

神经网络变得简单(第 77 部分):交叉协方差变换器(XCiT)

在我们的模型中,我们经常使用各种关注度算法。而且,可能我们最常使用变换器。它们的主要缺点是资源需求。在本文中,我们将研究一种新算法,它可以帮助降低计算成本,而不会降低品质。
preview
动物迁徙优化(AMO)算法

动物迁徙优化(AMO)算法

本文介绍了AMO算法,该算法通过模拟动物的季节性迁徙来寻找适合生存和繁殖的最优条件。AMO的主要特点包括使用拓扑邻域和概率更新机制,使得其易于实现,并且能够灵活应用于各种优化任务。
preview
基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

基于MQL5和Python的自优化EA(第六部分):利用深度双重下降算法

传统的机器学习教导从业者要警惕不要使模型陷入过度拟合。然而,这种观念正受到哈佛大学研究人员最新发表的学术见解的挑战。他们发现,看似过拟合的情形在某些情况下可能是由于提前终止训练过程导致的。我们将展示如何利用研究论文中发表的观点,来改进我们使用人工智能预测市场行为的方式。
preview
神经网络实践:割线

神经网络实践:割线

正如理论部分已经解释的那样,在使用神经网络时,我们需要使用线性回归和导数。为什么呢?原因是线性回归是现存最简单的公式之一。从本质上讲,线性回归只是一种仿射函数。然而,当我们谈论神经网络时,我们对直接线性回归的影响并不感兴趣。我们感兴趣的是生成这条直线的方程。我们对创建出的线并不感兴趣。你知道我们需要理解的主要方程吗?如果没有,我建议您阅读这篇文章来了解它。
preview
精通模型解释:从您的机器学习模型中获取深入见解

精通模型解释:从您的机器学习模型中获取深入见解

机器学习对于任何经验的人来说都是一个复杂而回报的领域。在本文中,我们将深入探讨为您所构建模型提供动力的内在机制,我们探索的错综复杂的世界,涵盖特征、预测和化解复杂性的有力决策,并牢牢把握模型解释。学习驾驭权衡、强化预测、特征重要性排位的艺术,同时确保做出稳健的决策。这篇基本读物可帮助您从机器学习模型中获得更高的性能,并为运用机器学习方法提取更多价值。
preview
跨邻域搜索(ANS)

跨邻域搜索(ANS)

本文揭示了跨邻域搜索(ANS)算法的潜力,作为重要的一步,旨在开发灵活且智能的优化方法,使其能够在搜索空间中考虑问题的具体特性和环境的动态变化。
preview
数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

数据科学和机器学习(第 31 部分):利用 CatBoost AI 模型进行交易

CatBoost AI 模型最近在机器学习社区中广受欢迎,因为它们的预测准确性、效率、及针对分散和困难数据集的健壮性。在本文中,我们将详细讨论如何实现这些类型的模型,进而尝试进击外汇市场。
preview
交易中的神经网络:节点-自适应图形表征(NAFS)

交易中的神经网络:节点-自适应图形表征(NAFS)

我们邀请您领略 NAFS(节点-自适应特征平滑)方法,这是一种创建节点表征的非参数方法,不需要参数训练。NAFS 提取每个给定节点的邻域特征,然后把这些特征自适应组合,从而形成最终表征。
preview
神经网络实践:伪逆 (二)

神经网络实践:伪逆 (二)

由于这些文章本质上是教育性的,并不打算展示特定功能的实现,因此我们在本文中将做一些不同的事情。我们将重点介绍伪逆的因式分解,而不是展示如何应用因式分解来获得矩阵的逆。原因是,如果我们能以一种特殊的方式来获得一般系数,那么展示如何获得一般系数就没有意义了。更好的是,读者可以更深入地理解为什么事情会以这种方式发生。那么,现在让我们来弄清楚为什么随着时间的推移,硬件正在取代软件。
preview
您应当知道的 MQL5 向导技术(第 32 部分):正则化

您应当知道的 MQL5 向导技术(第 32 部分):正则化

正则化是一种在贯穿神经网络各层应用离散权重,按比例惩罚损失函数的形式。我们来考察其重要性,对于一些不同的正则化形式,能够在配合向导组装的智能系统运行测试。
preview
重构经典策略(第五部分):基于USDZAR的多品种分析

重构经典策略(第五部分):基于USDZAR的多品种分析

在本系列文章中,我们重新审视经典策略,看看是否可以使用人工智能来改进这些策略。在今天的文章中,我们将研究一种使用一篮子具有相关性的金融产品来进行多品种分析的流行策略,我们将重点关注货币对 USDZAR。
preview
神经网络实践:最小二乘法

神经网络实践:最小二乘法

在本文中,我们将探讨一些想法,包括数学公式在外观上怎么会比用代码实现时更复杂。此外,我们还将考虑如何设置图表的象限,以及 MQL5 代码中可能出现的一个有趣问题。不过,说实话,我还是不太明白该如何解释。总之,我会告诉你如何用代码解决这个问题。
preview
交易中的神经网络:层次化向量变换器(HiVT)

交易中的神经网络:层次化向量变换器(HiVT)

我们邀请您来领略层次化矢量转换器(HiVT)方法,其专为快速、准确地预测多模态时间序列而开发。
preview
神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

神经网络变得简单(第 63 部分):决策转换器无监督预训练(PDT)

我们将继续讨论决策转换器方法系列。从上一篇文章中,我们已经注意到,训练这些方法架构下的转换器是一项相当复杂的任务,需要一个大型标记数据集进行训练。在本文中,我们将观看到一种使用未标记轨迹进行初步模型训练的算法。
preview
随机数生成器质量对优化算法效率的影响

随机数生成器质量对优化算法效率的影响

在这篇文章中,我们将探讨梅森旋转算法(Mersenne Twister)随机数生成器,并将其与MQL5中的标准随机数生成器进行比较。此外,我们还将研究随机数生成器的质量对优化算法结果的影响。
preview
人工藻类算法(Artificial Algae Algorithm,AAA)

人工藻类算法(Artificial Algae Algorithm,AAA)

文章探讨了基于藻类微生物特征的人工藻类算法(AAA)。该算法包括螺旋运动、进化过程和适应性,使其能够解决优化问题。本文深入分析了AAA的工作原理及其在数学建模中的潜力,强调了自然与算法解决方案之间的联系。
preview
MQL5 中的范畴论 (第 14 部分):线性序函子

MQL5 中的范畴论 (第 14 部分):线性序函子

本文是更广泛关于以 MQL5 实现范畴论系列的一部分,深入探讨了函子(Functors)。我们实验了如何将线性序映射到集合,这要归功于函子;通过研究两组数据,典型情况下会忽略其间的任何联系。
preview
头脑风暴优化算法(第一部分):聚类

头脑风暴优化算法(第一部分):聚类

在本文中,我们将探讨一种受自然现象“头脑风暴”启发的新型优化方法——头脑风暴优化(Brain Storm Optimization,简称BSO)。我们还将讨论BSO方法所应用的一种解决多模态优化问题的新方法。该方法能够在无需预先确定子种群数量的情况下,找到多个最优解。此外,我们还会考虑K-Means和K-Means++聚类方法。
preview
原子轨道搜索(AOS)算法

原子轨道搜索(AOS)算法

本文探讨了原子轨道搜索(Atomic Orbital Search,AOS)算法,该算法运用原子轨道模型的概念来模拟解的搜索过程。此算法基于概率分布以及原子内相互作用的动力学原理。本文详细阐述了关于AOS算法的数学层面,包括候选解位置的更新方式,以及能量吸收与释放的机制。AOS算法通过为计算问题提供一种创新的优化方法,为将量子原理应用于计算问题开辟了新思路。
preview
神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型

神经网络变得简单(第 97 部分):搭配 MSFformer 训练模型

在探索各种模型架构设计时,我们往往对模型训练过程的关注投入不足。在本文中,我旨在弥补这一差距。
preview
交易中的神经网络:对比形态变换器(终章)

交易中的神经网络:对比形态变换器(终章)

在本系列的上一篇文章中,我们考察了“原子-基序对比变换器”(AMCT)框架,其用对比学习来发现各个级别的关键形态,从基本元素到复杂结构。在本文中,我们将继续利用 MQL5 实现 AMCT 方式。
preview
开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

开发具有 RestAPI 集成的 MQL5 强化学习代理(第 3 部分):在 MQL5 中创建自动移动和测试脚本

本文讨论在 Python 中实现井字游戏中的自动移动,并与 MQL5 函数和单元测试集成。目标是通过在 MQL5 中进行测试,提高游戏的互动性并确保系统的可靠性。本文内容包括游戏逻辑开发、集成和实际测试,最后将介绍动态游戏环境和强大集成系统的创建。
preview
交易中的神经网络:点云分析(PointNet)

交易中的神经网络:点云分析(PointNet)

直接分析点云避免了不必要的数据增长,并改进了模型在分类和任务分段时的性能。如此方式对于原始数据中的扰动展现出高性能和稳健性。
preview
数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

数据科学和机器学习(第 21 部分):解锁神经网络,优化算法揭秘

深入神经网络的心脏,我们将揭秘神经网络内部所用的优化算法。在本文中,探索解锁神经网络全部潜力的关键技术,把您的模型准确性和效率推向新的高度。
preview
种群优化算法:模拟退火(SA)。第 1 部分

种群优化算法:模拟退火(SA)。第 1 部分

模拟退火算法是受到金属退火工艺启发的一种元启发式算法。在本文中,我们将对算法进行全面分析,并揭示围绕这种广为人知的优化方法的一些常见信仰和神话。本文的第二部分将研究自定义模拟各向同性退火(SIA)算法。
preview
您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

您应当知道的 MQL5 向导技术(第 21 部分):配以财经日历数据进行测试

默认情况下,财经日历数据在策略测试器中不可用于智能系统测试。我们看看数据库能如何提供帮助,绕过这个限制。故此,在本文中,我们会探讨如何使用 SQLite 数据库来存档财经日历新闻,如此这般,由向导组装的智能系统就可以用它来生成交易信号。
preview
您应当知道的 MQL5 向导技术(第 08 部分):感知器

您应当知道的 MQL5 向导技术(第 08 部分):感知器

感知器,单隐藏层网络,对于任何精熟基本自动交易,并希望涉足神经网络的人来说都是一个很好的切入点。我们查看这是如何在一个信号类当中一步一步组装实现的,其是 MQL5 向导类中用于智能交易系统的部分。