关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

您应当知道的 MQL5 向导技术(第 18 部分):配合本征向量进行神经架构搜索

神经架构搜素,是一种判定理想神经网络设置的自动化方式,在面对许多选项和大型测试数据集时可能是一个加分项。我们试验了当本征向量搭配时,如何令这个过程更加高效。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
交易中的神经网络:降低锐度强化变换器效率(终章)

交易中的神经网络:降低锐度强化变换器效率(终章)

SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
preview
时间演化旅行算法(TETA)

时间演化旅行算法(TETA)

这是我自己的算法。本文表阐述受平行宇宙和时间流概念启发的时间演化旅行算法(TETA)。该算法的基本思路是,尽管传统意义上的时间旅行是不可能的,但我们能够选择一系列事件来导致不同的现实。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
交易中的神经网络:场景感知物体检测(HyperDet3D)

交易中的神经网络:场景感知物体检测(HyperDet3D)

我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
preview
神经网络实践:伪逆(I)

神经网络实践:伪逆(I)

今天,我们将开始探讨如何在纯MQL5语言中实现伪逆的计算。即将展示的代码对于初学者来说可能比我预期的要复杂得多,我还在思考如何以简单的方式解释它。所以,现在请将其视为学习一些不寻常代码的机会。请保持冷静和专注。虽然它并不旨在高效或快速应用,但其目标是尽可能具有教育意义。
preview
在Python和MQL5中应用局部特征选择

在Python和MQL5中应用局部特征选择

本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。
preview
循环孤雌生殖算法(CPA)

循环孤雌生殖算法(CPA)

本文提出了一种新的群体优化算法——循环孤雌生殖算法(CPA),其灵感源自蚜虫独特的生殖策略。该算法融合了两种生殖机制:孤雌生殖(无性繁殖)与有性生殖,并借助蚜虫的群体结构以及群体间的迁徙能力。算法的核心特点包括:在不同生殖策略之间自适应切换和通过“迁飞”机制实现群体间的信息交换。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
交易中的神经网络:优化时间序列预测变换器(LSEAttention)

交易中的神经网络:优化时间序列预测变换器(LSEAttention)

LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
preview
原子轨道搜索(AOS)算法:改进与拓展

原子轨道搜索(AOS)算法:改进与拓展

在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。
preview
基于通用 MLP 逼近器的EA

基于通用 MLP 逼近器的EA

本文介绍了一种在交易 EA 中使用神经网络的简单且易于实现的方法,该方法不需要深厚的机器学习知识。该方法免除了对目标函数进行归一化的步骤,同时克服了“权重爆炸”和“网络停滞”等问题,并提供了直观的训练过程和结果的可视化控制。
preview
金融建模中合成数据的生成式对抗网络(GAN)(第 1 部分):金融建模中的 GAN 与合成数据概述

金融建模中合成数据的生成式对抗网络(GAN)(第 1 部分):金融建模中的 GAN 与合成数据概述

本文向交易者介绍产生合成金融数据的生成式对抗网络(GAN),解决模型训练中的数据限制。它涵盖了 GAN 基础知识、python 和 MQL5 代码实现,以及实际的金融应用,令交易者能够通过合成数据强化模型的准确性和健壮性。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。
preview
在Python中使用Numba对交易策略进行快速测试

在Python中使用Numba对交易策略进行快速测试

本文实现了一个快速策略测试器,它使用Numba对机器学习模型进行快速策略测试。它的速度比纯 Python 策略回测器快 50 倍。作者推荐使用该库来加速数学计算,尤其是那些涉及循环的计算。
preview
因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。
preview
交易中的神经网络:降低锐度强化变换器效率(SAMformer)

交易中的神经网络:降低锐度强化变换器效率(SAMformer)

训练变换器模型需要大量数据,并且往往很困难,因为模型不擅长类推到小型数据集。SAMformer 框架通过避免糟糕的局部最小值来帮助解决这个问题。即使在有限的训练数据集上,也能提升模型的效率。
preview
将互信息作为渐进特征选择的准则

将互信息作为渐进特征选择的准则

在本文中,我们展示了基于最优预测变量集与目标变量之间互信息渐进特征选择的MQL5实现。
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

交易中的神经网络:搭配区段注意力的参数效率变换器(终篇)

在之前的工作中,我们讨论了 PSformer 框架的理论层面,其中包括经典变换器架构的两大创新:参数共享(PS)机制,以及时空区段注意力(SegAtt)。在本文中,我们继续实现所提议方式的 MQL5 版本。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇(终章)

在上一篇文章中,我们讲述了多智代自适应框架 MASAAT,其用一组智代的融汇在不同数据尺度下对多模态时间序列进行交叉分析。今天我们将继续实现该框架方法的 MQL5 版本,并将这项工作带至逻辑完结。
preview
神经网络实践:绘制神经元

神经网络实践:绘制神经元

在本文中,我们将构建一个基本神经元。虽然它看起来很简单,许多人可能会认为这段代码完全微不足道,毫无意义,但我希望你在学习这个简单的神经元草图时能玩得开心。不要害怕修改代码,完全理解它才是目标。
preview
使用 Python 创建波动率预测指标

使用 Python 创建波动率预测指标

在本文中,我们将使用二元分类来预测未来的极端波动。此外,我们将利用机器学习开发极端波动预测指标。
preview
交易中的神经网络:具有层化记忆的智代(终篇)

交易中的神经网络:具有层化记忆的智代(终篇)

我们继续致力于创建 FinMem 框架,其采用层化记忆方式,即模拟人类认知过程。这令该模型不仅能有效处理复杂的财务数据,还能适应新信号,显著提升了在动态变化市场中投资决策的准确性和有效性。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
preview
以 MQL5 实现强化分类任务的融汇方法

以 MQL5 实现强化分类任务的融汇方法

在本文中,我们讲述以 MQL5 实现若干融汇分类器,并讨论了它们在不同状况下的功效。
preview
您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

您应当知道的 MQL5 向导技术(第 31 部分):选择损失函数

损失函数是机器学习算法的关键量值,即量化给定参数集相比预期目标的性能来为训练过程提供反馈。我们在 MQL5 自定义向导类中探索该函数的各种格式。
preview
具有强化学习和灭绝失败个体的进化交易算法(ETARE)

具有强化学习和灭绝失败个体的进化交易算法(ETARE)

在本文中,我介绍了一种创新的交易算法,其针对外汇交易结合了进化算法与深度强化学习。该算法利用低效个体灭绝机制来优化交易策略。
preview
圆搜索算法(CSA)

圆搜索算法(CSA)

本文提出一种基于圆几何特性的新型元启发式优化算法——圆搜索算法(CSA)。该算法通过模拟切线方向上的点移动机制,在解空间中实现全局探索与局部开发的协同优化。
preview
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。
preview
探索达瓦斯箱体突破策略中的高级机器学习技术

探索达瓦斯箱体突破策略中的高级机器学习技术

达瓦斯箱体突破策略由尼古拉斯·达瓦斯(Nicolas Darvas)提出,是一种技术交易方法:当股价突破预设的"箱体"区间上沿时,视为潜在买入信号,表明强劲的上升动能。本文将以该策略为例,探讨三种高级机器学习技术的应用。其中包括:利用机器学习模型直接生成交易信号(而非仅过滤交易);采用连续型信号(而非离散型信号);使用基于不同时间框架训练的模型进行交易验证。