关于交易中机器学习的文章

icon

创建基于AI的交易机器人:与Python的原生集成矩阵和向量数学和统计库等。

了解如何在交易中使用机器学习。神经元、感知器、卷积和循环网络、预测模型 — 从基础开始,逐步开发您自己的AI。您将学习如何为金融市场的算法交易训练和应用神经网络。

添加一个新的文章
最近 | 最佳
preview
交易中的神经网络:超点变换器(SPFormer)

交易中的神经网络:超点变换器(SPFormer)

在本文中,我们概述一种基于“超点变换器”(SPFormer) 的三维物体分段方法,其剔除了对中间数据聚合的需求。这加快了分段过程,并提高了模型的性能。
preview
交易中的神经网络:受控分段

交易中的神经网络:受控分段

在本文中。我们将讨论一种复杂的多模态交互分析和特征理解的方法。
preview
群体算法的基类作为高效优化的支柱

群体算法的基类作为高效优化的支柱

该文章代表了一种独特的研究尝试,旨在将多种群体算法组合成一个类,以简化优化方法的应用。这种方法不仅为开发新算法(包括混合变体)开辟了机会,而且还创建了一个通用的基本测试平台。它成为根据特定任务选择最佳算法的关键工具。
preview
在任何市场中获得优势(第三部分):Visa消费指数

在任何市场中获得优势(第三部分):Visa消费指数

在大数据的世界里,有数以百万计的备选数据集,它们有可能提升我们的交易策略。在这一系列文章中,我们将帮助您识别最有信息量的公开数据集。
preview
非洲水牛优化(ABO)

非洲水牛优化(ABO)

本文介绍了非洲水牛优化(ABO)算法,这是一种于2015年开发的元启发式方法,基于这些动物的独特行为。文章详细描述了算法实现的各个阶段及其在解决复杂问题时的效率,这使得它成为优化领域中一个有价值的工具。
preview
基于主成分的特征选择与降维

基于主成分的特征选择与降维

本文深入探讨了改进型前向选择成分分析(Forward Selection Component Analysis,FSCA)算法的实现,该算法灵感源自Luca Puggini和Sean McLoone在《前向选择成分分析:算法与应用》一文中所提出的研究。
preview
神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

神经网络变得简单(第 82 部分):常微分方程模型(NeuralODE)

在本文中,我们将讨论另一种模型类型,它们旨在研究环境状态的动态。
preview
矩阵分解:更实用的建模

矩阵分解:更实用的建模

您可能没有注意到,矩阵建模有点奇怪,因为只指定了列,而不是行和列。在阅读执行矩阵分解的代码时,这看起来非常奇怪。如果您希望看到列出的行和列,那么在尝试分解时可能会感到困惑。此外,这种矩阵建模方法并不是最好的。这是因为当我们以这种方式对矩阵建模时,会遇到一些限制,迫使我们使用其他方法或函数,而如果以更合适的方式建模,这些方法或函数是不必要的。
preview
循环孤雌生殖算法(CPA)

循环孤雌生殖算法(CPA)

本文提出了一种新的群体优化算法——循环孤雌生殖算法(CPA),其灵感源自蚜虫独特的生殖策略。该算法融合了两种生殖机制:孤雌生殖(无性繁殖)与有性生殖,并借助蚜虫的群体结构以及群体间的迁徙能力。算法的核心特点包括:在不同生殖策略之间自适应切换和通过“迁飞”机制实现群体间的信息交换。
preview
您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

您应当知道的 MQL5 向导技术(第 34 部分):采用非常规 RBM 进行价格嵌入

受限玻尔兹曼(Boltzmann)机是一种神经网络形式,开发于 1980 年代中叶,当时的计算资源非常昂贵。在其初创时,它依赖于 Gibbs 采样,以及对比散度来降低维度,或捕获输入训练数据集上的隐藏概率/属性。我们验证当 RBM 为预测多层感知器“嵌入”价格时,反向传播如何执行类似的操作。
preview
适应性社会行为优化(ASBO):两阶段演变

适应性社会行为优化(ASBO):两阶段演变

我们继续探讨生物体的社会行为及其对新数学模型 ASBO(适应性社会行为优化)开发的影响。我们将深入研究两阶段演变,测试算法并得出结论。正如在自然界中,一群生物体共同努力生存一样,ASBO 使用集体行为原理来解决复杂的优化问题。
preview
交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

交易中的神经网络:配备注意力机制(MASAAT)的智代融汇

我们概述多智代自适应投资组合优化框架(MASAAT),其结合了注意力机制和时间序列分析。MASAAT 生成一组智代,分析价格序列和方向变化,能够在不同细节层次识别资产价格的明显波动。
preview
ALGLIB库优化方法(第一部分)

ALGLIB库优化方法(第一部分)

在本文中,我们将了解适用于MQL5的ALGLIB库的优化方法。本文包含了使用ALGLIB解决优化问题的简单且清晰的示例,旨在使读者能够尽可能轻松地掌握这些方法。我们将详细探讨BLEIC、L-BFGS和NS等算法的连接方式,并使用它们来解决一个简单的测试问题。
preview
种群优化算法:人工多社区搜索对象(MSO)

种群优化算法:人工多社区搜索对象(MSO)

这是上一篇研究社群概念文章的延续。本文使用迁徙和记忆算法探讨社群的演化。结果将有助于理解社区系统的演化,并将其应用于优化和寻找解。
preview
您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

您应当知道的 MQL5 向导技术(第 41 部分):深度-Q-网络

“深度-Q-网络” 是一种强化学习算法,在机器学习模块的训练过程中,神经网络参与预测下一个 Q 值和理想动作。我们曾研究过另一种强化学习算法 “Q-学习”。本文因此出示了另一个如何配以强化学习训练 MLP 的示例,可于自定义信号类中所用。
preview
您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

您应当知道的 MQL5 向导技术(第 36 部分):依据马尔可夫(Markov)链的 Q-学习

强化学习是机器学习的三大信条之一,并肩两个是监督学习和无监督学习。因此,它在意的是最优控制,或学习最适合目标函数的最佳长期政策。正是在这种背衬下,我们探索其向一款由向导组装的智能系统中 MLP 中通知学习过程的可能作用。
preview
交易中的神经网络:降低锐度强化变换器效率(终章)

交易中的神经网络:降低锐度强化变换器效率(终章)

SAMformer 为长期时间序列预测中变换器模型的主要缺点,譬如训练复杂性,及小型数据集的普适能力差,提供了解决方案。其浅层架构和锐度感知优化有助于避免次优的局部最小值。在本文中,我们将继续利用 MQL5 实现方式,并评估其实用价值。
preview
在外汇数据分析中使用关联规则

在外汇数据分析中使用关联规则

如何将超市零售分析中的预测规则应用于真实的外汇市场?购买饼干、牛奶和面包与证券交易所的交易有何关联?本文讨论了一种基于关联规则的算法交易的创新方法。
preview
交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

交易中的神经网络:搭配区段注意力的参数效率变换器(PSformer)

本文讲述新的 PSformer 框架,其适配雏形变换器架构,解决与多元时间序列预测相关的问题。该框架基于两项关键创新:参数共享(PS)机制,和区段注意力(SegAtt)。
preview
使用 Python 创建波动率预测指标

使用 Python 创建波动率预测指标

在本文中,我们将使用二元分类来预测未来的极端波动。此外,我们将利用机器学习开发极端波动预测指标。
preview
突破机器学习的局限(第一部分):缺乏可互操作的度量指标

突破机器学习的局限(第一部分):缺乏可互操作的度量指标

无论以何种形式构建可靠的人工智能(AI)交易策略,都有一种强大且普遍存在的力量,正悄然地侵蚀着我们社区的集体努力,本文提到,我们所面临的部分问题,源于对“最优实践”的盲目遵循。通过为读者提供基于现实市场的简单证据,我们说明为何必须摒弃这种做法,转而采用特定领域内的最优实践,这样一来,我们的社区才有可能重振AI的潜在力量。
preview
交易中的神经网络:优化时间序列预测变换器(LSEAttention)

交易中的神经网络:优化时间序列预测变换器(LSEAttention)

LSEAttention 框架改进变换器架构。它是专为长期多变量时间序列预测而设计。该方法作者提议的方法能应用于解决雏形变换器经常遇到的熵坍缩、及学习不稳定问题。
preview
交易中的神经网络:定向扩散模型(DDM)

交易中的神经网络:定向扩散模型(DDM)

在本文中,我们讨论定向扩散模型,其利用数据相关的各向异性、和定向噪声,在前向扩散过程中捕获有意义的图形表征。
preview
基于通用 MLP 逼近器的EA

基于通用 MLP 逼近器的EA

本文介绍了一种在交易 EA 中使用神经网络的简单且易于实现的方法,该方法不需要深厚的机器学习知识。该方法免除了对目标函数进行归一化的步骤,同时克服了“权重爆炸”和“网络停滞”等问题,并提供了直观的训练过程和结果的可视化控制。
preview
交易中的神经网络:双曲型潜在扩散模型(HypDiff)

交易中的神经网络:双曲型潜在扩散模型(HypDiff)

本文研究经由各向异性扩散过程在双曲型潜在空间中编码初始数据的方法。这有助于更准确地保留当前市场状况的拓扑特征,并提升其分析品质。
preview
原子轨道搜索(AOS)算法:改进与拓展

原子轨道搜索(AOS)算法:改进与拓展

在本文的第二部分,我们将继续开发一种改进版的原子轨道搜索(AOS)算法,重点聚焦于特定操作符的优化设计,以提升算法的效率和适应性。在分析了该算法的基本原理和运行机制之后,我们将探讨提升其性能以及分析复杂解空间能力的方法,并提出新的思路以扩展其作为优化工具的功能。
preview
神经网络实践:伪逆(I)

神经网络实践:伪逆(I)

今天,我们将开始探讨如何在纯MQL5语言中实现伪逆的计算。即将展示的代码对于初学者来说可能比我预期的要复杂得多,我还在思考如何以简单的方式解释它。所以,现在请将其视为学习一些不寻常代码的机会。请保持冷静和专注。虽然它并不旨在高效或快速应用,但其目标是尽可能具有教育意义。
preview
交易中的神经网络:探索局部数据结构

交易中的神经网络:探索局部数据结构

在嘈杂的条件下有效识别和预存市场数据的局部结构是交易中的一项关键任务。运用自注意力机制在处理这类数据方面展现出可喜的结果;不过,经典方式并未考虑底层结构的局部特征。在本文中,我将引入一种能够协同这些结构依赖关系的算法。
preview
交易中的神经网络:场景感知物体检测(HyperDet3D)

交易中的神经网络:场景感知物体检测(HyperDet3D)

我们邀请您来领略一种利用超网络检测物体的新方式。超网络针对主模型生成权重,允许参考具体的当前市场形势。这种方式令我们能够通过令模型适配不同的交易条件来提升预测准确性。
preview
在Python和MQL5中应用局部特征选择

在Python和MQL5中应用局部特征选择

本文探讨了Narges Armanfard等人在论文《数据分类的局部特征选择》中介绍的一种特征选择算法。该算法使用Python实现,用于构建二元分类器模型,这些模型可以与MetaTrader 5应用程序集成以进行推理。
preview
市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel

市场模拟(第六部分):将信息从 MetaTrader 5 传输到 Excel

许多人,尤其是非程序员,发现在 MetaTrader 5 和其他程序之间传输信息非常困难。其中一个程序就是 Excel。许多人使用 Excel 作为管理和维护风险控制的一种方式。这是一个优秀的程序,易于学习,即使对于那些不是 VBA 程序员的人来说也是如此。在这里,我们将看看如何在 MetaTrader 5 和 Excel 之间建立连接(一种非常简单的方法)。
preview
神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

神经网络变得简单(第 79 部分):在状态上下文中的特征聚合查询(FAQ)

在上一篇文章中,我们领略了一种从图像中检测对象的方法。不过,处理静态图像与处理动态时间序列(例如我们所分析的价格动态)有些不同。在本文中,我们将研究检测视频中对象的方法,其可在某种程度上更接近我们正在解决的问题。
preview
神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

神经网络变得简单(第 83 部分):“构象”时空连续关注度转换器算法

本文介绍了最初是为天气预报而开发的“构象(Conformer)”算法,其变化多端之处可与金融市场相提并论。“构象(Conformer)”是一种复杂的方法。它结合了关注度模型和常微分方程的优点。
preview
交易中的神经网络:层次化向量变换器(终章)

交易中的神经网络:层次化向量变换器(终章)

我们继续研究层次化向量变换器方法。在本文中,我们将完成模型的构造。我们还会在真实历史数据上对其进行训练和测试。
preview
金融建模中合成数据的生成式对抗网络(GAN)(第 1 部分):金融建模中的 GAN 与合成数据概述

金融建模中合成数据的生成式对抗网络(GAN)(第 1 部分):金融建模中的 GAN 与合成数据概述

本文向交易者介绍产生合成金融数据的生成式对抗网络(GAN),解决模型训练中的数据限制。它涵盖了 GAN 基础知识、python 和 MQL5 代码实现,以及实际的金融应用,令交易者能够通过合成数据强化模型的准确性和健壮性。
preview
名义变量的序数编码

名义变量的序数编码

在本文中,我们将讨论并演示如何使用Python和MQL5将名义预测变量转换为适合机器学习算法的数值格式。
preview
您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

您应当知道的 MQL5 向导技术(第 47 部分):配合时态差异的强化学习

时态差异是强化学习中的另一种算法,它基于智顾训练期间预测和实际奖励之间的差异更新 Q-值。它专门驻守更新 Q-值,而不介意它们的状态-动作配对。因此,我们考察如何在向导汇编的智能系统中应用这一点,正如我们在之前文章中所做的那样。
preview
因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

因果网络分析(CNA)、随机模型最优控制(SMOC)和纳什博弈论结合深度学习的示例

我们将向之前发布的文章中的三个例子里加入深度学习,并与之前的版本进行比较。目标是学习如何将深度学习(DL)应用于其他EA。
preview
使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

使用经典机器学习方法预测汇率:逻辑回归(logit)模型和概率回归(probit)模型

本文尝试构建一款用于预测汇率报价的EA。该算法以经典分类模型——逻辑回归与概率回归为基础。并利用似然比检验作为交易信号的筛选器。
preview
您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

您应当知道的 MQL5 向导技术(第 54 部分):搭配混合 SAC 和张量的强化学习

软性参与者-评论者是一种强化学习算法,我们曾在之前的系列文章中考察过 Python 和 ONNX,作为高效的网络训练方式。我们重新审视该算法,意在利用张量,即 Python 中常用的计算图形。