种群优化算法:社群进化(ESG)
我们将研究构造多种群算法的原理。作为该算法类别的一个示例,我们将查看新的自定义算法 — 社群进化(ESG)。我们将分析该算法的基本概念、种群互动机制和优势,并检查其在优化问题中的表现。
人工电场算法(AEFA)
本文介绍了一种受库仑静电力定律启发的人工电场算法(AEFA)。该算法通过模拟电学现象,利用带电粒子及其相互作用来解决复杂的优化问题。与其他基于自然法则的算法相比,AEFA具有独特性质。
将 ML 模型与策略测试器集成(第 3 部分):CSV(II)文件管理
这篇资料提供了以 MQL5 创建类,从而高效管理 CSV 文件的完整指南。 我们将看到打开、写入、读取、和转换数据等方法的实现。 我们还将研究如何使用它们来存储和访问信息。 此外,我们将讨论使用该类的限制和最重要的方面。 本文对于那些想要学习如何在 MQL5 中处理 CSV 文件的人来说是一个宝贵的资源。
MQL5中的范畴论(第20部分):自我注意的迂回与转换
我们暂时离开我们的系列文章,考虑一下 chatGPT 中的部分算法。有没有从自然变换中借鉴的相似之处或概念?我们尝试用信号类格式的代码,在一篇有趣的文章中回答这些和其他问题。
您应当知道的 MQL5 向导技术(第 13 部分):智能信号类 DBSCAN
《基于密度的空间聚类参与噪声应用》是一种无监督的数据分组形式,除 2 个参数外,几乎不需要任何输入参数,比之其它方式,譬如 k-平均,这是一个福音。我们深入研究使用由向导组装的智能系统如何在测试、及最终交易时起到建设性作用。
种群优化算法:鸟群算法(BSA)
本文探讨了受自然界鸟类集群行为启发而产生的基于鸟群的算法(BSA)。BSA中的个体采用不同的搜索策略,包括在飞行、警戒和觅食行为之间的切换,使得该算法具有多面性。它利用鸟类集群、交流、适应性、领导与跟随等规则来高效地找到最优解。
MQL5中的范畴论(第21部分):使用LDA的自然变换
这篇文章是我们系列的第21篇,继续研究自然变换以及如何使用线性判别分析(linear discriminant analysis,LDA)来实现它们。我们以信号类格式展示了它的应用程序,就像在前一篇文章中一样。
数据科学和机器学习(第 17 部分):摇钱树?外汇交易中随机森林的艺术与科学
探索算法炼金术的秘密,我们将引导您融会贯通如何在解码金融领域时将艺术性和精确性相结合。揭示随机森林如何将数据转化为预测能力,为驾驭股票市场的复杂场景提供独特的视角。加入我们的旅程,进入金融魔法的心脏地带,此处我们会揭开随机森林在塑造市场命运、及解锁赚钱机会之门方面之角色的神秘面纱
神经网络变得简单(第 96 部分):多尺度特征提取(MSFformer)
高效提取与集成长期依赖关系和短期特征,仍然是时间序列分析中的一项重要任务。它们的正确理解及整合,对于创建准确可靠的预测模型是必要的。
群体优化算法:思维进化计算(MEC)算法
本文探讨了MEC家族的算法,称为简单思维进化计算(Simple Mind Evolutionary Computation, Simple-MEC,SMEC)算法。该算法以其思想之美和易于实现而著称。
神经网络变得简单(第 59 部分):控制二分法(DoC)
在上一篇文章中,我们领略了决策变换器。但是,外汇市场复杂的随机环境不允许我们充分发挥所提议方法的潜能。在本文中,我将讲述一种算法,旨在提高在随机环境中的性能。
交易中的神经网络:统一轨迹生成模型(UniTraj)
理解个体在众多不同领域的行为很重要,但大多数方法只专注其中一项任务(理解、噪声消除、或预测),这会降低它们在现实中的有效性。在本文中,我们将领略一个可以适配解决各种问题的模型。
将 MQL5 与数据处理包集成(第 1 部分):高级数据分析和统计处理
集成实现了无缝的工作流程,来自 MQL5 的原始金融数据可以导入到 Jupyter Lab 等数据处理包中,用于包括统计测试在内的高级分析。
MQL5 中的范畴论 (第 13 部分):数据库制程的日历事件
本文在 MQL5 中遵循范畴论实现秩序,研究如何在 MQL5 中结合数据库制程进行分类。我们介绍了当辨别交易相关的文本(字符串)信息时,如何把数据库制程概念与范畴论相结合。日历事件是焦点。
神经网络变得简单(第 76 部分):配合多未来变换器探索不同的交互形态
本文继续探讨预测即将到来的价格走势的主题。我邀请您领略多未来变换器架构。其主要思路是把未来的多模态分布分解为若干个单模态分布,这样就可以有效地模拟场景中个体之间互动的各种模态。
交易中的神经网络:用于时间序列预测的轻量级模型
轻量级时间序列预测模型使用最少的参数数量实现高性能。这反过来减少了计算资源的消耗并加快了决策速度。尽管是轻量级的,这些模型实现了与更复杂模型相当的预测质量。
交易中的神经网络:将全局信息注入独立通道(InjectTST)
大多数现代多模态时间序列预测方法都采用了独立通道方式。这忽略了同一时间序列不同通道的天然依赖性。巧妙地运用两种方式(独立通道和混合通道),是提高模型性能的关键。
在任何市场中获得优势(第五部分):联邦储备经济数据库(FRED)欧元兑美元( EURUSD)可替代数据
在今天的讨论中,我们使用了圣路易斯联邦储备银行(St. Louis Federal Reserve)提供的关于广义美元指数以及其他一系列宏观经济指标的可替代日数据,来预测欧元兑美元(EURUSD)未来的汇率。遗憾的是,尽管数据似乎具有近乎完美的相关性,但我们在模型准确性方面未能实现任何实质性提升,这可能暗示投资者最好采用常规的市场价格数据。
神经网络变得简单(第 56 部分):利用核范数推动研究
强化学习中的环境研究是一个紧迫的问题。我们之前已视察过一些方式。在本文中,我们将讲述另一种基于最大化核范数的方法。它允许智能体识别拥有高度新颖性和多样性的环境状态。
将您自己的 LLM 集成到 EA 中(第 5 部分):使用 LLM 开发和测试交易策略(二)-LoRA-调优
随着当今人工智能的快速发展,语言模型(LLMs)是人工智能的重要组成部分,因此我们应该考虑如何将强大的 LLMs 整合到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
最负盛名的人工协作搜索算法的改进版本(AXSm)
在这里,我们将探讨 ACS 算法的演变:三种修改旨在改善收敛特性和算法效率。对最领先的优化算法之一进行修订改版。从数据矩阵修改到种群形成的革命性方法。
种群优化算法:细菌觅食优化 — 遗传算法(BFO-GA)
本文释义了一种解决优化问题的新方式,即把细菌觅食优化(BFO)算法和遗传算法(GA)中所用的技术结合到混合型 BFO-GA 算法当中。它用细菌群落来全局搜索最优解,并用遗传运算器来优调局部最优值。与原始的 BFO 不同,细菌现在可以突变,并继承基因。
化学反应优化 (CRO) 算法(第二部分):汇编和结果
在第二部分中,我们将把化学运算符整合到一个算法中,并对其结果进行详细分析。让我们来看看化学反应优化 (CRO) 方法是如何解决测试函数的复杂问题的。
将您自己的 LLM 集成到 EA 中(第 3 部分):使用 CPU 训练自己的 LLM
在人工智能飞速发展的今天,大语言模型(LLM)是人工智能的重要组成部分,所以我们应该思考如何将强大的 LLM 融入到我们的算法交易中。对于大多数人来说,很难根据他们的需求微调这些强大的模型,在本地部署它们,然后将它们应用于算法交易。本系列文章将采取循序渐进的方法来实现这一目标。
您应当知道的 MQL5 向导技术(第 11 部分):数字墙
数字墙(Number Walls)是线性回移寄存器的一种变体,其通过检查收敛性来预筛选序列来达到可预测性。我们看看这些思路如何运用在 MQL5。
数据科学和机器学习(第 30 部分):预测股票市场的幂对、卷积神经网络(CNN)、和递归神经网络(RNN)
在本文中,我们会探讨卷积神经网络(CNN)和递归神经网络(RNN)在股票市场预测中的动态集成。借力 CNN 提取形态的能力,以及 RNN 的精练度,来处理序列数据。我们看看这个强大的组合如何强化交易算法的准确性和效率。
MQL5中的范畴论(第18部分):自然性四边形
本文通过介绍自然变换这一主题中的一个关键支柱,继续我们的范畴理论系列。我们研究看似复杂的定义,然后深入研究本系列“面包和黄油”的示例和应用程序;波动性预测。
人工蜂巢算法(ABHA):测试与结果
在本文中,我们将继续深入探索人工蜂巢算法(ABHA),通过深入研究代码并探讨其余的方法。正如您可能还记得的那样,模型中的每只蜜蜂都被表示为一个独立的智能体,其行为取决于内部和外部信息以及动机状态。我们将在各种函数上测试该算法,并通过在评分表中呈现结果来总结测试效果。
在 MQL5 中构建自优化智能交易系统(第六部分):防止爆仓
在今天的讨论中,我们将一同寻找一种算法程序,以最大限度地减少我们因盈利交易被止损而平仓的总次数。我们面临的问题极具挑战性,社区讨论中给出的大多数解决方案都缺乏既定且固定的规则。我们解决问题的算法方法提高了我们交易的盈利能力,并降低了我们的平均每笔交易亏损。然而,要完全过滤掉所有将被止损的交易,还需要进一步的改进,但我们的解决方案对任何人来说都是一个很好的初步尝试
数据科学与机器学习(第22部分):利用自编码器神经网络实现更智能的交易——从噪声中提炼信号
在瞬息万变的金融市场中,从噪音中分离出有意义的信号对于成功交易至关重要。通过采用复杂的神经网络架构,利用自动编码器发掘市场数据中的隐藏模式,将嘈杂的输入转化为可操作的类型。本文探讨了自动编码器如何改变交易实践,为交易者提供了一个强大的工具,以改善决策制定,并在当今瞬息万变的市场中获得竞争优势。
克服集成ONNX(Open Neural Network Exchange )的挑战
ONNX是集成不同平台间复杂AI代码的强大工具,尽管它非常出色,但要想充分发挥其作用,就必须解决一些伴随而来的挑战。在本文中,我们将讨论您可能会遇到的一些常见问题,以及如何处理这些问题。
神经网络变得轻松(第五十一部分):行为-指引的扮演者-评论者(BAC)
最后两篇文章研究了软性扮演者-评论者算法,该算法将熵正则化整合到奖励函数当中。这种方式在环境探索和模型开发之间取得平衡,但它仅适用于随机模型。本文提出了一种替代方式,能适用于随机模型和确定性模型两者。
用于时间序列挖掘的数据标签(第 6 部分):使用 ONNX 在 EA 中应用和测试
本系列文章介绍了几种时间序列标注方法,可以创建符合大多数人工智能模型的数据,根据需要进行有针对性的数据标注可以使训练好的人工智能模型更符合预期的设计,提高我们模型的准确性,甚至帮助模型实现质的飞跃!
重塑经典策略(第三部分):预测新高与新低
在系列文章的第三部分中,我们将通过实证分析经典交易策略,探讨如何利用人工智能进行优化。本次研究聚焦于运用线性判别分析模型(LDA)预测价格走势中的更高高点与更低低点。
您应当知道的 MQL5 向导技术(第 16 部分):配合本征向量进行主成分分析
本文所见的主成分分析,是数据分析中的一种降维技术,文中还有如何配合本征值和向量来实现它。一如既往,我们瞄向的是开发一个可在 MQL5 向导中使用的原型专业信号类。