Построение модели для ограничения диапазона сигналов по тренду (Часть 1): Для советников и технических индикаторов
Статья рассчитана на начинающих и профессиональных разработчиков MQL5. Она предоставляет фрагмент кода для определения индикаторов, генерирующих сигналы, и их ограничения трендами на более старших таймфреймах. Таким образом, трейдеры могут улучшить свои стратегии, включив в них более широкую перспективу рынка, что приведет к получению потенциально более надежных торговых сигналов.
Нейросети в трейдинге: Анализ облака точек (PointNet)
Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.
Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями
В статье представлен способ реализации задач оптимизации с несколькими целями и ограничениями при выборе режима Custom Max в настройках терминала MetaTrader 5. Например, задача оптимизации может быть следующей: максимизировать фактор прибыли, чистую прибыль и фактор восстановления таким образом, чтобы просадка была менее 10%, количество последовательных убытков было менее 5, а количество сделок в неделю было более 5.
Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)
Продолжаем изучение метода Иерархического Векторного Transformer. И в данной статье мы завершим построение модели. А также проведем её обучение и тестирование на реальных исторических данных.
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)
Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)
Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
Разрабатываем мультивалютный советник (Часть 17): Дальнейшая подготовка к реальной торговле
Сейчас наш советник использует базу данных для получения строк инициализации одиночных экземпляров торговых стратегий. Однако база данных является достаточно объёмной и содержит много информации, ненужной при реальной работе советника. Попробуем обеспечить работоспособность советника без обязательного подключения к базе данных.
Возможности Мастера MQL5, которые вам нужно знать (Часть 15): Метод опорных векторов с полиномом Ньютона
Метод опорных векторов (Support Vector Machines) классифицирует данные на основе предопределенных классов, исследуя эффекты увеличения их размерности. Это метод обучения с учителем, который довольно сложен, учитывая его потенциальную возможность работы с многомерными данными. В этой статье мы рассмотрим, как эффективнее реализовать базовую версию двумерных данных с помощью полинома Ньютона при классификации ценовых действий.
Нейросети в трейдинге: Универсальная модель генерации траекторий (UniTraj)
Понимание поведения агентов важно в разных областях, но большинство методов фокусируются на одной задаче (понимание, удаление шума, прогнозирование), что снижает их эффективность в реальных сценариях. В данной статье я предлагаю познакомиться с моделью, которая способна адаптироваться к решению различных задач.
Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)
В данной статье я хочу познакомить вас с одним интересным методом прогнозирования траекторий, разработанным для решения задач в области автономного движения транспортных средств. Авторы метода объединили в нем лучшие элементы различных архитектурных решений.
Нейросети в трейдинге: Модели пространства состояний
В основе большого количества рассмотренных нами ранее моделей лежит архитектура Transformer. Однако они могут быть неэффективны при работе с длинными последовательностями. И в этой статье я предлагаю познакомиться с альтернативным направлением прогнозирования временных рядов на основе моделей пространства состояний.
Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)
Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.
Нейросети в трейдинге: Практические результаты метода TEMPO
Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.
Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях
В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.
Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования
Разрабатываемый советник должен показывать хорошие результаты при торговле у разных брокеров. Но мы пока что для тестов использовали котировки с демо-счёта от MetaQuotes. Посмотрим, готов ли наш советник к работе на торговом счёте с другими котировками по сравнению с теми, которые использовались при тестировании и оптимизации.
Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника
Основанная на плотности пространственная кластеризация для приложений с шумами (Density Based Spatial Clustering for Applications with Noise, DBSCAN) - это неконтролируемая форма группировки данных, которая практически не требует каких-либо входных параметров, за исключением всего двух, что по сравнению с другими подходами, такими как k-средние, является преимуществом. Разберемся в том, как это может быть полезно в тестировании и торговле с применением советников, собранных в Мастере.
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов
Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике
Можем ли мы извлечь выгоду из сезонности при создании моделей для глубокого обучения с помощью Python? Помогает ли фильтрация данных в моделях ONNX получить лучшие результаты? Какой период времени использовать? Обо всем этом расскажем в этой статье.
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов
Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.
Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует индикаторы ZigZag и Awesome Oscillator, фильтрующие сигналы друг друга.
Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих
В пятой статье из нашей серии мы познакомимся с миром массивов в MQL5. Статья предназначена для начинающих. В статье попытаемся упрощенно рассмотреть сложные концепции программирования, чтобы материал был понятен всем. Давайте вместе будем изучать основные концепции, обсуждать вопросы и делиться знаниями!
Расширенные переменные и типы данных в MQL5
Переменные и типы данных — очень важные темы не только в программировании на MQL5, но и в любом языке программирования. Переменные и типы данных MQL5 можно разделить на простые и расширенные. Здесь мы рассмотрим расширенные переменные и типы данных. Простые мы изучали в предыдущей статье.
Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова
Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.
Разрабатываем мультивалютный советник (Часть 15): Готовим советник к реальной торговле
Постепенно приближаясь к получению готового советника, необходимо уделить внимание вопросам, которые являются второстепенными на этапе тестирования торговой стратегии, но становятся важными при переходе к реальной торговле.
Нейросети в трейдинге: Снижение потребления памяти методом оптимизации Adam (Adam-mini)
Одним из направлений повышения эффективности процесса обучения и сходимости моделей является улучшение методов оптимизации. Adam-mini представляет собой адаптивный метод оптимизации, разработанный для улучшения базового алгоритма Adam.
Модифицированный советник Grid-Hedge в MQL5 (Часть III): Оптимизация простой хеджирующей стратегии (I)
В третьей части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. Теперь мы займемся совершенствованием советника Simple Hedge с помощью математического анализа и подхода грубой силы (brute force) с целью оптимального использования стратегии. Эта статья углубляется в математическую оптимизацию стратегии, закладывая основу для будущего исследования оптимизации на основе кода в последующих частях.
Парадигмы программирования (Часть 2): Объектно-ориентированный подход к разработке советника на основе ценовой динамики
В этой статье мы поговорим о парадигме объектно-ориентированного программирования и ее применении в коде MQL5. Это вторая статья в серии. В ней мы познакомимся с особенностями объектно-ориентированного программирования и рассмотрим практические примеры. В прошлый раз мы написали советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Сейчас мы преобразуем его процедурный код в объектно-ориентированный.
Нейросети в трейдинге: Пространственно-временная нейронная сеть (STNN)
В данной статье мы поговорим об использовании пространственно-временных преобразований для эффективного прогнозирования предстоящего ценового движения. Для повышения точности численного прогнозирования в STNN был предложен механизм непрерывного внимания, который позволяет модели лучше учитывать важные аспекты данных.
Разрабатываем мультивалютный советник (Часть 14): Адаптивное изменение объёмов в риск-менеджере
Разработанный ранее риск-менеджер содержал только базовую функциональность. Попробуем рассмотреть возможные пути его развития, позволяющие повысить торговые результаты без вмешательства в логику торговых стратегий.
Модель глубокого обучения GRU на Python с использованием ONNX в советнике, GRU vs LSTM
Статья посвящена разработке модели глубокого обучения GRU ONNX на Python. В практической части мы реализуем эту модель в торговом советнике, а затем сравним работу модели GRU с LSTM (долгой краткосрочной памятью).
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов
Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.
Нейросети в трейдинге: Кусочно-линейное представление временных рядов
Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.
Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer
При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.
Введение в MQL5 (Часть 4): Структуры, классы и функции времени
В этой серии мы продолжаем раскрывать секреты программирования. В новой статье мы изучим в основы структур, классов и временных функций и получим новые навыки для эффективного программирования. Это руководство, возможно, будет полезно не только для новичков, но и для опытных разработчиков, поскольку упрощает сложные концепции, предоставляя ценную информацию для освоения MQL5. Продолжайте изучать новое, совершенствуйте навыки программирования и освойте мир алгоритмического трейдинга.
Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)
Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.
Нейросети — это просто (Часть 95): Снижение потребления памяти в моделях Transformer
Модели на основе архитектуры Transformer демонстрируют высокую эффективность, однако их использование осложняется большими затратами ресурсов как на этапе обучения, так и в процессе эксплуатации. В этой статье я предлагаю познакомиться с алгоритмами, которые позволяют уменьшить использование памяти такими моделями.
Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона
Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.
Как заработать, выполняя заказы трейдеров в сервисе "Фриланс"
MQL5 Фриланс - это онлайн-сервис, где разработчики за денежное вознаграждение пишут для трейдеров-заказчиков торговые приложения. Сервис успешно функционирует с 2010 года: на данный момент выполнено более 100 000 работ общей стоимостью в $7 млн. Как видим, деньги здесь крутятся вполне приличные.
Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы
Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.
Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных
При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.