Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Управляемая сегментация

Нейросети в трейдинге: Управляемая сегментация

Предлагаем познакомиться с методом комплексного мультимодального анализа взаимодействия и понимания признаков.
preview
Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5

Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5

В этой статье мы представим полное руководство для начинающих по созданию советников (EA) на MQL5. Вы найдете пошаговые инструкции по созданию экспертов с использованием псевдокода и возможностей кода, сгенерированного ИИ. Эта статья предназначена для тех, кто только начинает свой пусть в алготрейдинге, а также для всех, кто хочет улучшить навыки разработки эффективных советников.
preview
Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода

Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода

Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы

Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы

В этой статье рассматривается, как экономические новости, поведение инвесторов и различные факторы могут влиять на развороты рыночных трендов. Статья включает видео с пояснениями и внедряет MQL5-код в программу для обнаружения разворотов тренда, оповещения и принятия соответствующих мер в зависимости от рыночных условий.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия

Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
preview
Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений

Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений

В процессе анализа рыночной ситуации мы делим её на отдельные сегменты, выявляя ключевые тенденции. Однако традиционные методы анализа часто фокусируются на одном аспекте, что ограничивает восприятие. В данной статье мы познакомимся с методом, позволяющем выделять несколько объектов, что даёт более полное и многослойное понимание ситуации.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод

Байесовский вывод — это применение теоремы Байеса для обновления вероятностной гипотезы по мере поступления новой информации. Это намекает на необходимость адаптации в анализе временных рядов, и поэтому мы рассмотрим, как мы могли бы использовать его при создании пользовательских классов не только применительно к сигналам, но и для управления капиталом и трейлинг-стопами.
preview
Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения

Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения

В данной статье предлагаем познакомиться с методом Mask-Attention-Free Transformer (MAFT) и его применение в области трейдинга. В отличие от традиционных Transformer, требующих маскирования данных при обработке последовательностей, MAFT оптимизирует процесс внимания, устраняя необходимость в маскировании, что значительно повышает вычислительную эффективность.
preview
Нейросети в трейдинге: Superpoint Transformer (SPFormer)

Нейросети в трейдинге: Superpoint Transformer (SPFormer)

В данной статья предлагаем познакомиться с методом сегментации 3D-люъектов на основе Superpoint Transformer (SPFormer), который устраняет необходимость в промежуточной агрегации данных. Что ускоряет процесс сегментации и повышает производительность модели.
preview
Статистический арбитраж с прогнозами

Статистический арбитраж с прогнозами

Мы рассмотрим статистический арбитраж, выполним поиск символов корреляции и коинтеграции с помощью Python, создадим индикатор для коэффициента Пирсона, а также советник для торговли статистическим арбитражем с прогнозами, сделанными с помощью Python и моделей ONNX.
preview
Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money

Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money

Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 2): Объединение нативных индикаторов

Построение модели для ограничения диапазона сигналов по тренду (Часть 2): Объединение нативных индикаторов

В статье рассматривается использование встроенных индикаторов MetaTrader 5 для отсеивания нетрендовых сигналов. Продолжая предыдущую статью, мы рассмотрим, как это сделать с помощью кода MQL5, чтобы воплотить нашу идею в виде программы.
preview
Нейросети в трейдинге: Изучение локальной структуры данных

Нейросети в трейдинге: Изучение локальной структуры данных

Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
preview
Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)

Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)

Предлагаем вам познакомиться с новым подход обнаружения объектов при помощи гиперсетей. Гиперсети могут генерировать весовые коэффициенты для основной модели, что позволяет учитывать особенности текущего состояния рынка. Такой подход позволяет улучшить точность прогнозирования, адаптируя модель к различным торговым условиям.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля

По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.
preview
Нейросети в трейдинге: Transformer для облака точек (Pointformer)

Нейросети в трейдинге: Transformer для облака точек (Pointformer)

В данной статье мы поговорим об алгоритмах использования методов внимания при решении задач обнаружения объектов в облаке точек. Обнаружение объектов в облаках точек имеет важное значение для многих реальных приложений.
preview
Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Нейросети в трейдинге: Иерархическое обучение признаков облака точек

Продолжаем изучение алгоритмов для извлечения признаков из облака точек. И в данной статье мы познакомимся с механизмами повышения эффективности метода PointNet.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 1): Для советников и технических индикаторов

Построение модели для ограничения диапазона сигналов по тренду (Часть 1): Для советников и технических индикаторов

Статья рассчитана на начинающих и профессиональных разработчиков MQL5. Она предоставляет фрагмент кода для определения индикаторов, генерирующих сигналы, и их ограничения трендами на более старших таймфреймах. Таким образом, трейдеры могут улучшить свои стратегии, включив в них более широкую перспективу рынка, что приведет к получению потенциально более надежных торговых сигналов.
preview
Нейросети в трейдинге: Анализ облака точек (PointNet)

Нейросети в трейдинге: Анализ облака точек (PointNet)

Прямой анализ облака точек позволяет избежать излишнего увеличения объема данных и повышает эффективность моделей в задачах классификации и сегментации. Подобные подходы демонстрируют высокую производительность и устойчивость к возмущениям в исходных данных.
preview
Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями

Универсальная формула оптимизации (GOF) при реализации режима Custom Max с ограничениями

В статье представлен способ реализации задач оптимизации с несколькими целями и ограничениями при выборе режима Custom Max в настройках терминала MetaTrader 5. Например, задача оптимизации может быть следующей: максимизировать фактор прибыли, чистую прибыль и фактор восстановления таким образом, чтобы просадка была менее 10%, количество последовательных убытков было менее 5, а количество сделок в неделю было более 5.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Нейросети в трейдинге: Иерархический векторный Transformer (Окончание)

Продолжаем изучение метода Иерархического Векторного Transformer. И в данной статье мы завершим построение модели. А также проведем её обучение и тестирование на реальных исторических данных.
preview
Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Введение в MQL5 (Часть 6): Функции для работы с массивами для начинающих (II)

Продолжим изучение возможностей языка программирования MQL5. В этой статье, предназначенной для начинающих, мы продолжим изучать функции для работы массивами, перейдя к более сложным концепциям, которые обязательно пригодятся при разработке эффективных торговых стратегий. В этот раз познакомимся с функциями ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse и ArraySort. Функции массивы знать обязательно, если вы хотите достичь высокого уровня в области алготрейдинга. Это очередная глава на пути к мастерству.
preview
Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Нейросети в трейдинге: Иерархический векторный Transformer (HiVT)

Предлагаем познакомиться с методом Иерархический Векторный Transformer (HiVT), который был разработан для быстрого и точного прогнозирования мультимодальных временных рядов.
preview
Разрабатываем мультивалютный советник (Часть 17): Дальнейшая подготовка к реальной торговле

Разрабатываем мультивалютный советник (Часть 17): Дальнейшая подготовка к реальной торговле

Сейчас наш советник использует базу данных для получения строк инициализации одиночных экземпляров торговых стратегий. Однако база данных является достаточно объёмной и содержит много информации, ненужной при реальной работе советника. Попробуем обеспечить работоспособность советника без обязательного подключения к базе данных.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 15): Метод опорных векторов с полиномом Ньютона

Возможности Мастера MQL5, которые вам нужно знать (Часть 15): Метод опорных векторов с полиномом Ньютона

Метод опорных векторов (Support Vector Machines) классифицирует данные на основе предопределенных классов, исследуя эффекты увеличения их размерности. Это метод обучения с учителем, который довольно сложен, учитывая его потенциальную возможность работы с многомерными данными. В этой статье мы рассмотрим, как эффективнее реализовать базовую версию двумерных данных с помощью полинома Ньютона при классификации ценовых действий.
preview
Нейросети в трейдинге: Универсальная модель генерации траекторий (UniTraj)

Нейросети в трейдинге: Универсальная модель генерации траекторий (UniTraj)

Понимание поведения агентов важно в разных областях, но большинство методов фокусируются на одной задаче (понимание, удаление шума, прогнозирование), что снижает их эффективность в реальных сценариях. В данной статье я предлагаю познакомиться с моделью, которая способна адаптироваться к решению различных задач.
preview
Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)

Нейросети в трейдинге: Комплексный метод прогнозирования траекторий (Traj-LLM)

В данной статье я хочу познакомить вас с одним интересным методом прогнозирования траекторий, разработанным для решения задач в области автономного движения транспортных средств. Авторы метода объединили в нем лучшие элементы различных архитектурных решений.
preview
Нейросети в трейдинге: Модели пространства состояний

Нейросети в трейдинге: Модели пространства состояний

В основе большого количества рассмотренных нами ранее моделей лежит архитектура Transformer. Однако они могут быть неэффективны при работе с длинными последовательностями. И в этой статье я предлагаю познакомиться с альтернативным направлением прогнозирования временных рядов на основе моделей пространства состояний.
preview
Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Нейросети в трейдинге: Инъекция глобальной информации в независимые каналы (InjectTST)

Большинство современных методов прогнозирования мультимодальных временных рядов используют подход независимых каналов. Тем самым игнорируется природная зависимость различных каналов одного временного ряда. Разумное использование 2 подходов (независимых и смешанных каналов) является ключом к повышению эффективности моделей.
preview
Нейросети в трейдинге: Практические результаты метода TEMPO

Нейросети в трейдинге: Практические результаты метода TEMPO

Продолжаем знакомство с методом TEMPO. И в данной статье мы оценим фактическую эффективность предложенных подходов на реальных исторических данных.
preview
Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях

Машинное обучение и Data Science (Часть 21): Сравниваем алгоритмы оптимизации в нейронных сетях

В этой статье мы заглянем в самую глубь нейронных сетей и поговорим об используемых в них алгоритмах оптимизации. В частности обсудим ключевые методы, которые позволяют раскрыть потенциал нейронных сетей и повысить точность и эффективность моделей.
preview
Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования

Разрабатываем мультивалютный советник (Часть 16): Влияние разных историй котировок на результаты тестирования

Разрабатываемый советник должен показывать хорошие результаты при торговле у разных брокеров. Но мы пока что для тестов использовали котировки с демо-счёта от MetaQuotes. Посмотрим, готов ли наш советник к работе на торговом счёте с другими котировками по сравнению с теми, которые использовались при тестировании и оптимизации.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Основанная на плотности пространственная кластеризация для приложений с шумами (Density Based Spatial Clustering for Applications with Noise, DBSCAN) - это неконтролируемая форма группировки данных, которая практически не требует каких-либо входных параметров, за исключением всего двух, что по сравнению с другими подходами, такими как k-средние, является преимуществом. Разберемся в том, как это может быть полезно в тестировании и торговле с применением советников, собранных в Мастере.
preview
Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Нейросети в трейдинге: Использование языковых моделей для прогнозирования временных рядов

Мы продолжаем рассмотрения моделей прогнозирования временных рядов. И в данной статье я предлагаю познакомиться с комплексным алгоритмом, построенным на использовании предварительно обученной языковой модели.
preview
Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике

Фильтр сезонности и временные периоды в моделях глубокого обучения с ONNX и Python в советнике

Можем ли мы извлечь выгоду из сезонности при создании моделей для глубокого обучения с помощью Python? Помогает ли фильтрация данных в моделях ONNX получить лучшие результаты? Какой период времени использовать? Обо всем этом расскажем в этой статье.
preview
Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Нейросети в трейдинге: "Легкие" модели прогнозирования временных рядов

Легковесные модели прогнозирования временных рядов обеспечивают высокую производительность, используя минимальное количество параметров. Что, в свою очередь, снижает расход вычислительных ресурсов и ускоряет принятие решений. При этом они достигают качества прогнозов, сопоставимого с более сложными моделями.
preview
Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator

Создаем простой мультивалютный советник с использованием MQL5 (Часть 7): Сигналы индикаторов ZigZag и Awesome Oscillator

Под мультивалютным советником в этой статье понимается советник, или торговый робот, который использует индикаторы ZigZag и Awesome Oscillator, фильтрующие сигналы друг друга.
preview
Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих

Введение в MQL5 (Часть 5): Функции для работы с массивами для начинающих

В пятой статье из нашей серии мы познакомимся с миром массивов в MQL5. Статья предназначена для начинающих. В статье попытаемся упрощенно рассмотреть сложные концепции программирования, чтобы материал был понятен всем. Давайте вместе будем изучать основные концепции, обсуждать вопросы и делиться знаниями!
preview
Расширенные переменные и типы данных в MQL5

Расширенные переменные и типы данных в MQL5

Переменные и типы данных — очень важные темы не только в программировании на MQL5, но и в любом языке программирования. Переменные и типы данных MQL5 можно разделить на простые и расширенные. Здесь мы рассмотрим расширенные переменные и типы данных. Простые мы изучали в предыдущей статье.
preview
Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова

Теория хаоса в трейдинге (Часть 1): Введение, применение на финансовых рынках и индикатор Ляпунова

Можно ли применять теорию хаоса на финансовых рынках? Чем классическая теория Хаоса и хаотические системы отличаются от концепции, предложенной Биллом Вильямсом, рассмотрим в этой статье.