
Нейросети в трейдинге: Модель двойного внимания для прогнозирования трендов
Продолжаем разговор об использовании кусочно-линейного представления временных рядов, начатый в предыдущей статье. И сегодня мы поговорим о комбинировании данного метода с другими подходами к анализу временных рядов для повышения качества прогнозирования трендов ценовых движений.

Нейросети в трейдинге: Кусочно-линейное представление временных рядов
Эта статья несколько отличается от предыдущих работ данной серии. В ней мы поговорим об альтернативном представлении временных рядов. Кусочно-линейное представление временных рядов — это метод аппроксимации временного ряда с помощью линейных функций на небольших интервалах.

Нейросети — это просто (Часть 97): Обучение модели с использованием MSFformer
При изучении различных архитектур построения моделей мы мало уделяем внимания процессу обучения моделей. В этой статье я попытаюсь восполнить этот пробел.

Введение в MQL5 (Часть 4): Структуры, классы и функции времени
В этой серии мы продолжаем раскрывать секреты программирования. В новой статье мы изучим в основы структур, классов и временных функций и получим новые навыки для эффективного программирования. Это руководство, возможно, будет полезно не только для новичков, но и для опытных разработчиков, поскольку упрощает сложные концепции, предоставляя ценную информацию для освоения MQL5. Продолжайте изучать новое, совершенствуйте навыки программирования и освойте мир алгоритмического трейдинга.

Нейросети — это просто (Часть 96): Многоуровневое извлечение признаков (MSFformer)
Эффективное извлечение и объединение долгосрочных зависимостей и краткосрочных характеристик остаются важной задачей в анализе временных рядов. Правильное их понимание и интеграция необходимы для создания точных и надежных предсказательных моделей.

Нейросети — это просто (Часть 95): Снижение потребления памяти в моделях Transformer
Модели на основе архитектуры Transformer демонстрируют высокую эффективность, однако их использование осложняется большими затратами ресурсов как на этапе обучения, так и в процессе эксплуатации. В этой статье я предлагаю познакомиться с алгоритмами, которые позволяют уменьшить использование памяти такими моделями.

Возможности Мастера MQL5, которые вам нужно знать (Часть 12): Полином Ньютона
Полином Ньютона, который создает квадратные уравнения из набора нескольких точек, представляет собой архаичный, но интересный подход к рассмотрению временных рядов. В этой статье мы попытаемся изучить, какие аспекты этого подхода могут быть полезны трейдерам, а также устранить его ограничения.

Как заработать, выполняя заказы трейдеров в сервисе "Фриланс"
MQL5 Фриланс - это онлайн-сервис, где разработчики за денежное вознаграждение пишут для трейдеров-заказчиков торговые приложения. Сервис успешно функционирует с 2010 года: на данный момент выполнено более 100 000 работ общей стоимостью в $7 млн. Как видим, деньги здесь крутятся вполне приличные.

Разрабатываем мультивалютный советник (Часть 13): Автоматизация второго этапа — отбор в группы
Первый этап автоматизированного процесса оптимизации у нас уже реализован. Для разных символов и таймфреймов мы проводим оптимизацию по нескольким критериям и сохраняем информацию о результатах каждого прохода в базе данных. Теперь займёмся отбором лучших групп наборов параметров из найденных на первом этапе.

Нейросети — это просто (Часть 94): Оптимизация последовательности исходных данных
При работе с временными рядами мы всегда используем исходные данные в их исторической последовательности. Но является ли это оптимальным вариантом? Существует мнение, что изменение последовательности исходных данных позволит повысить эффективность обучаемых моделей. В данной статье я предлагаю вам познакомиться с одним из таких методов.

Введение в MQL5 (Часть 3): Изучаем основные элементы MQL5
В этой статье мы продолжаем изучать основы программирования на MQL5. Мы рассмотрим массивы, пользовательские функции, препроцессоры и обработку событий. Для наглядности каждый шаг всех объяснений будет сопровождаться кодом. Эта серия статей закладывает основу для изучения MQL5, уделяя особое внимание объяснению каждой строки кода.

Разработка и тестирование торговых систем на основе Канала Кельтнера
В этой статье мы рассмотрим торговые системы, использующие очень важную концепцию финансового рынка — волатильность. Мы изучим торговую систему, основанную на канала Кельтнера (Keltner Channel), включая ее реализацию в коде и тестирование на различных активах.

Нейросети — это просто (Часть 93): Адаптивное прогнозирование в частотной и временной областях (Окончание)
В данной статье мы продолжаем реализацию подходов ATFNet — модели, которая адаптивно объединяет результаты 2 блоков (частотного и временного) прогнозирования временных рядов

Введение в MQL5 (Часть 2): Предопределенные переменные, общие функции и операторы потока управления
В этой статье мы продолжаем знакомиться с языком программирования MQL5. Данная серия статей — не просто учебный материал пособия, это двери в мир программирования. Что делает их особенными? Я постарался в объяснениях сохранять простоту изложения, чтобы сделать сложные концепции доступными для всех. При всей доступности материала, для наилучшего результата вам нужно активно воспроизводить все, о чем мы будем говорить. Только в этом случае вы получите максимальную выгоду от данных статей.

Нейросети — это просто (Часть 92): Адаптивное прогнозирование в частотной и временной областях
Авторы метода FreDF экспериментально подтвердили преимущество комбинированного прогнозирования в частотной и временной областях. Однако применение весового гиперпараметра не является оптимальным для нестационарных временных рядов. В данной статье я предлагаю познакомиться с методом адаптивного сочетания прогнозов в частотной и временной областях.

Возможности Мастера MQL5, которые вам нужно знать (Часть 11): Числовые стены
Числовые стены (Number Walls) — это вариант регистра сдвига с линейной обратной связью (Linear Shift Back Registers), который предварительно оценивает последовательности на предмет предсказуемости путем проверки на сходимость. Мы посмотрим, как эти идеи могут быть использованы в MQL5.

Разрабатываем мультивалютный советник (Часть 12): Риск-менеджер как для проп-трейдинговых компаний
В разрабатываемом советнике у нас уже заложен определённый механизм контроля просадки. Но он имеет вероятностную природу, так как основывается на результатах тестирования на исторических ценовых данных. Поэтому просадка, хотя и с небольшой вероятностью, может иногда превышать максимальные ожидаемые значения. Попробуем добавить механизм, обеспечивающий гарантированное соблюдение заданного уровня просадки.

Нейросети — это просто (Часть 91): Прогнозирование в частотной области (FreDF)
Мы продолжаем рассмотрение темы анализ и прогнозирования временных рядов в частотной области. И в данной статье мы познакомимся с новым методом прогнозирования в частотной области, который может быть добавлен к многим, изученным нами ранее, алгоритмам.

Разработка и тестирование торговых систем Aroon
В этой статье мы узнаем, как построить торговую систему Aroon, изучив основы индикаторов и необходимые шаги для создания торговой системы на основе индикатора Aroon. После создания этой торговой системы мы проверим, может ли она быть прибыльной или требует дополнительной оптимизации.

Разрабатываем мультивалютный советник (Часть 11): Начало автоматизации процесса оптимизации
Для получения хорошего советника нам надо подобрать для него множество хороших наборов параметров экземпляров торговых стратегий. Это можно делать вручную, запуская оптимизацию на разных символах, и затем отбирая лучшие результаты. Но лучше поручить эту работу программе и заняться более продуктивной деятельностью.

Нейросети — это просто (Часть 90): Частотная интерполяция временных рядов (FITS)
При изучении метода FEDformer мы приоткрыли дверь в частотную область представления временного ряда. В новой статье мы продолжим начатую тему. И рассмотрим метод, позволяющий не только проводить анализ, но и прогнозировать последующие состояния в частной области.

Прогнозирование на основе глубокого обучения и открытие ордеров с помощью пакета MetaTrader 5 python и файла модели ONNX
Проект предполагает использование Python для прогнозирования на финансовых рынках на основе глубокого обучения. Мы изучим тонкости тестирования производительности модели с использованием таких ключевых показателей, как средняя абсолютная ошибка (MAE), средняя квадратичная ошибка (MSE) и R-квадрат (R2), а также научимся объединять это всё в исполняемом файле. Мы также создадим файл модели ONNX и советник.

Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника
В статье рассматривается классическая сеточная стратегия, подробно описана ее автоматизация с помощью советника на MQL5 и проанализированы первоначальные результаты тестирования на истории. Также подчеркивается необходимость в долгом удержании позиций и рассматривается возможность оптимизации ключевых параметров (таких как расстояние, тейк-профит и размеры лотов) в будущих частях. Целью этой серии статей является повышение эффективности торговой стратегии и ее адаптируемости к различным рыночным условиям.

Риск-менеджер для алгоритмической торговли
Целями данной статьи являются: доказать обязательность применения риск-менеджера, адаптация принципов контролируемого риска при торговле алгоритмически в отдельном классе, чтобы каждый смог самостоятельно убедиться в эффективности подхода нормирования риска при внутридневной торговле и инвестировании на финансовых рынках. В данной статье мы подробно раскроем написание класса риск-менеджера для алгоритмической торговли в продолжение к предыдущей статье по написанию риск-менеджера для ручной торговли.

Разрабатываем мультивалютный советник (Часть 10): Создание объектов из строки
План разработки советника предусматривает несколько этапов с сохранением промежуточных результатов в базе данных. Заново достать их оттуда можно только в виде строк или чисел, а не объектов. Поэтому нам нужен способ воссоздания в советнике нужных объектов из строк, прочитанных из базы данных.

Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!

Нейросети — это просто (Часть 89): Трансформер частотного разложения сигнала (FEDformer)
Все рассмотренные нами ранее модели анализируют состояние окружающей среды в виде временной последовательности. Однако, тот же временной ряд можно представить и в виде частотных характеристик. В данной статье я предлагаю вам познакомиться с алгоритмом, который использует частотные характеристики временной последовательности для прогнозирования будущих состояний.

Возможности Мастера MQL5, которые вам нужно знать (Часть 10): Нетрадиционная RBM
Ограниченные машины Больцмана (Restrictive Boltzmann Machines, RBM) представляют собой на базовом уровне двухслойную нейронную сеть, способную выполнять неконтролируемую классификацию посредством уменьшения размерности. Мы используем ее основные принципы и посмотрим что случится, если мы перепроектируем и обучим ее нестандартно. Сможем ли мы получить полезный фильтр сигналов?

Нейросети — это просто (Часть 88): Полносвязный Энкодер временных рядов (TiDE)
Желание получить наиболее точные прогнозы толкает исследователей к усложнению моделей прогнозирования. Что в свою очередь ведет к увеличению затрат на обучение и обслуживание модели. Но всегда ли это оправдано? В данной статье я предлагаю вам познакомиться с алгоритмом, который использует простоту и скорость линейных моделей и демонстрирует результаты на уровне лучших с более сложной архитектурой.

Разметка данных в анализе временных рядов (Часть 5):Применение и тестирование советника с помощью Socket
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!

Нейросети — это просто (Часть 87): Сегментация временных рядов
Прогнозирование играет важную роль в анализе временных рядов. В новой статье мы поговорим о преимуществах сегментации временных рядов.

Разрабатываем мультивалютный советник (Часть 9): Сбор результатов оптимизации одиночных экземпляров торговой стратегии
Наметим основные этапы по разработке нашего советника. Одним из первых будет проведение оптимизации одиночного экземпляра разработанной торговой стратегии. Попробуем собрать в одном месте всю необходимую информацию о проходах тестера при оптимизации.

Нейросети — это просто (Часть 86): U-образный Трансформер
Мы продолжаем рассмотрение алгоритмов прогнозирования временных рядов. И в данной статье я предлагаю Вам познакомиться с методов U-shaped Transformer.

Шаблоны проектирования в программировании на MQL5 (Часть 4): Поведенческие шаблоны 2
Статья завершает серию о шаблонах проектирования в области программного обеспечения. Я уже упоминал, что существуют три типа шаблонов проектирования - порождающие, структурные и поведенческие. Мы доработаем оставшиеся паттерны поведенческого типа, которые помогут задать способ взаимодействия между объектами таким образом, чтобы сделать наш код чистым.

Нейросети — это просто (Часть 85): Многомерное прогнозирование временных рядов
В данной статье хочу познакомить Вас с новым комплексным методом прогнозирования временных рядов, который гармонично сочетает в себе преимущества линейных моделей и трансформеров.

Возможности Мастера MQL5, которые вам нужно знать (Часть 09): Сочетание кластеризации k-средних с фрактальными волнами
Кластеризация k-средних использует подход к группировке точек данных в виде процесса, изначально фокусирующегося на макропредставлении набора данных, в котором применяются случайно сгенерированные центроиды кластера. Затем эти центроиды масштабируются и настраиваются для точного представления набора данных. В статье рассматриваются кластеризация и несколько вариантов ее использования.

Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника
Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.

Парадигмы программирования (Часть 1): Процедурный подход к разработке советника на основе ценовой динамики
Узнайте о парадигмах программирования и их применении в коде MQL5. В этой статье исследуются особенности процедурного программирования, а также предлагаются практические примеры. Вы узнаете, как разработать советник на основе ценовой динамики (Price Action), используя индикатор EMA и свечные данные. Кроме того, статья знакомит с парадигмой функционального программирования.

Нейросети — это просто (Часть 84): Обратимая нормализация (RevIN)
Мы давно уже усвоили, что большую роль в стабильности обучения модели играет предварительная обработка исходных данных. И для online обработки "сырых" исходных данных мы часто используем слой пакетной нормализации. Но порой возникает необходимость обратной процедуры. Об одном из возможных подходов к решению подобных задач мы говорим в данной статье.

Создаем простой мультивалютный советник с использованием MQL5 (Часть 5): Полосы Боллинджера на канале Кельтнера — Сигналы индикаторов
Под мультивалютным советником в этой статье понимается советник, или торговый робот, который может торговать (открывать/закрывать ордера, управлять ордерами, например, трейлинг-стоп-лоссом и трейлинг-профитом) более чем одной парой символов с одного графика. В этой статье мы будем использовать сигналы двух индикаторов - полосы Боллинджера (Bollinger Bands®) на канале Кельтнера.