Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Машинное обучение и Data Science (Часть 26): Решающая битва в прогнозирование временных рядов — LSTM против GRU

Машинное обучение и Data Science (Часть 26): Решающая битва в прогнозирование временных рядов — LSTM против GRU

В предыдущей статье мы рассмотрели простую рекуррентную нейронную сеть, которая, несмотря на свою неспособность понимать долгосрочные зависимости в данных, смогла разработать прибыльную стратегию. В этой статье мы поговорим о долгой кратковременной памяти (Long-Short Term Memoryю LSTM) и об управляемом рекуррентном блоке (Gated Recurrent Unit, GRU). Эти два подхода были разработаны для преодоления недостатков простой рекуррентной нейронной сети.
preview
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (Окончание)

Мы завершаем реализацию фреймворка MacroHFT для высокочастотной торговли криптовалютами, который использует контекстно-зависимое обучение с подкреплением и памятью для адаптации к динамичным рыночным условиям. И в завершении данной статьи будет проведено тестирование реализованных подходов, на реальных исторических данных, для оценки их эффективности.
preview
Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)

Нейросети в трейдинге: Контекстно-зависимое обучение, дополненное памятью (MacroHFT)

Предлагаю познакомиться с фреймворком MacroHFT, который применяет контекстно зависимое обучение с подкреплением и память, для улучшения решений в высокочастотной торговле криптовалютами, используя макроэкономические данные и адаптивные агенты.
preview
Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)

Введение в MQL5 (Часть 8): Руководство для начинающих по созданию советников (II)

В этой статье рассматриваются частые вопросы, которые начинающие программисты задают на форуме MQL5. Также демонстрируются практические решения. Мы научимся совершать основные действия: покупку и продажу, получение цен свечей, а также управление торговыми аспектами, включая торговые лимиты, периоды и пороговые значения прибыли/убытка. В статье представлены пошаговые инструкции, которые помогут вам лучше понять и реализовать обсуждаемые концепции на MQL5.
preview
Создание советника Daily Drawdown Limiter на языке MQL5

Создание советника Daily Drawdown Limiter на языке MQL5

В статье подробно рассматриваются возможности реализации советника на основе торгового алгоритма. Это поможет автоматизировать систему на MQL5 и взять под контроль дневную просадку.
preview
Торговый инструментарий MQL5 (Часть 2): Расширение и применение EX5-библиотеки для управления позициями

Торговый инструментарий MQL5 (Часть 2): Расширение и применение EX5-библиотеки для управления позициями

Узнайте, как импортировать и использовать EX5-библиотеки в вашем коде или проектах MQL5. В этой статье мы расширим ранее созданную EX5-библиотеку, добавив больше функций управления позициями и создав два советника. В первом примере будет использоваться технический индикатор Variable Index Dynamic Average для разработки советника по стратегии трейлинг-стопа, а во втором - торговая панель для мониторинга, открытия, закрытия и изменения позиций. Эти два примера продемонстрируют, как использовать обновленную EX5-библиотеку для управления позициями.
preview
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (Окончание)

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (Окончание)

Продолжаем реализацию подходов, предложенных авторами фреймворка FinCon. FinCon является многоагентной системой, основанной на больших языковых моделях (LLM). Сегодня мы реализуем необходимые модули и проведем комплексное тестирование модели на реальных исторических данных.
preview
Использование JSON Data API в MQL-проектах

Использование JSON Data API в MQL-проектах

Представьте, что вы можете использовать данные, которых нет в MetaTrader. Обычно вы получаете информацию только от индикаторов, основанных на анализе цен и техническом анализе. Теперь представьте, что у вас есть доступ к данным, которые выведут ваши торговые возможности на новый уровень. Вы можете значительно увеличить мощность платформы MetaTrader, если объедините её возможности с результатами работы других программ, методов макроанализа и ультрасовременных инструментов через API. В этой статье мы расскажем, как использовать API, и представим полезные и ценные API-сервисы.
preview
Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Нейросети в трейдинге: Многоагентная система с концептуальным подтверждением (FinCon)

Предлагаем познакомиться с фреймворком FinCon, который представляет собой многоагентную систему на основе больших языковых моделей (LLM). Фреймворк использует концептуальное вербальное подкрепление для улучшения принятия решений и управления рисками, что позволяет эффективно выполнять разнообразные финансовые задачи.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Возможности Мастера MQL5, которые вам нужно знать (Часть 28): Сети GAN в контексте темпа обучения

Темп обучения — это размер шага к цели обучения во многих алгоритмах машинного обучения. В статье мы изучим, какое влияние многочисленные форматы могут оказать на производительность генеративно-состязательной сети (Generative Adversarial Network, GAN) — разновидности нейронной сети, которую мы рассмотрели в одной из предыдущих статей.
preview
Разрабатываем мультивалютный советник (Часть 21): Подготовка к важному эксперименту и оптимизация кода

Разрабатываем мультивалютный советник (Часть 21): Подготовка к важному эксперименту и оптимизация кода

Для дальнейшего продвижения хорошо было бы посмотреть, можем ли мы улучшить результаты, периодически выполняя повторную автоматическую оптимизацию и генерирование нового советника. Камнем преткновения во многих спорах об использовании оптимизации параметров является вопрос о том, насколько долго можно использовать полученные параметры для торговли в будущем периоде с сохранением основных показателей прибыльности и просадки на заданных уровнях. И можно ли вообще это делать?
preview
Разработка советника на основе стратегии прорыва диапазона консолидации на MQL5

Разработка советника на основе стратегии прорыва диапазона консолидации на MQL5

В статье описываются шаги по созданию торгового советника, который извлекает выгоду из ценовых прорывов после периодов консолидации. Определяя диапазоны консолидации и устанавливая уровни прорыва, трейдеры могут автоматизировать свои торговые решения на основе этой стратегии. Советник призван обеспечить четкие точки входа и выхода, избегая ложных пробоев.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (Окончание)

Продолжаем работу по реализации алгоритмов мультимодального агента для финансовой торговли FinAgent, предназначенного для анализа мультимодальных данных рыночной динамики и исторических торговых паттернов.
preview
Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Машинное обучение и Data Science (Часть 25): Прогнозирование временных рядов на форексе с помощью рекуррентных нейросетей (RNN)

Рекуррентные нейронные сети (RNN) ценятся за способность использовать прошлую информацию для прогнозирования будущих событий. Такие прогностические возможности с успехом применяются в различных областях. В этой статье мы применим модели RNN для прогнозирования трендов на рынке Форекс. Посмотрим, смогут ли они повысить точность прогнозирования в трейдинге.
preview
Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)

Нейросети в трейдинге: Мультимодальный агент, дополненный инструментами (FinAgent)

Предлагаем познакомиться с фреймворком мультимодального агента для финансовой торговли FinAgent, который предназначен для анализа данных разных типов, отражающих рыночную динамику и исторические торговые паттерны.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 27): Скользящие средние и угол атаки

Возможности Мастера MQL5, которые вам нужно знать (Часть 27): Скользящие средние и угол атаки

Угол атаки (Angle of Attack) — популярный показатель, значение крутизны (steepness) которого, как считается, тесно связано с силой преобладающего тренда. Мы рассмотрим, как он обычно трактуется и применяется, и выясним, есть ли изменения, которые можно было бы внести в способ его измерения для улучшения торговой системы.
preview
Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)

Нейросети в трейдинге: Агент с многоуровневой памятью (Окончание)

Продолжаем начатую работу по созданию фреймворка FinMem, который использует подходы многоуровневой памяти, имитирующие когнитивные процессы человека. Это позволяет модели не только эффективно обрабатывать сложные финансовые данные, но и адаптироваться к новым сигналам, значительно повышая точность и результативность инвестиционных решений в условиях динамично изменяющихся рынков.
preview
Нейросети в трейдинге: Агент с многоуровневой памятью

Нейросети в трейдинге: Агент с многоуровневой памятью

Подходы многоуровневой памяти, имитирующие когнитивные процессы человека, позволяют обрабатывать сложные финансовые данные и адаптироваться к новым сигналам, что способствует повышению эффективности инвестиционных решений в условиях динамичных рынков.
preview
Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)

Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания (Окончание)

В предыдущей статье мы рассмотрели теоретические основы и приступили к реализации подходов фреймворка Multitask-Stockformer, объединяющего вейвлет-преобразование и многозадачную модель Self-Attention. Продолжаем реализацию алгоритмов указанного фреймворка и оценим их эффективность на реальных исторических данных.
preview
Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания

Нейросети в трейдинге: Модели с использованием вейвлет-преобразования и многозадачного внимания

Предлагаем познакомиться с фреймворком объединяющим вейвлет-преобразование и многозадачную модель Self-Attention, направленную на повышение отзывчивости и точности прогнозирования в условиях нестабильности рынка. Вейвлет-преобразование позволяет разложить доходность активов на высокие и низкие частоты, тщательно фиксируя долгосрочные рыночные тенденции и краткосрочные колебания.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Возможности Мастера MQL5, которые вам нужно знать (Часть 26): Скользящие средние и показатель Херста

Показатель Херста — это мера того, насколько сильно временной ряд автокоррелирует в долгосрочной перспективе. Предполагается, что он отражает долгосрочные свойства временного ряда и поэтому имеет определенный вес в анализе временных рядов даже за пределами экономических/финансовых временных рядов. Однако мы сосредоточимся на его потенциальной пользе для трейдеров, изучив, как этот показатель можно объединить со скользящими средними для формирования потенциально надежного сигнала.
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (Окончание)

Продолжаем рассмотрение гибридной торговой системы StockFormer, которая объединяет предиктивное кодирование и алгоритмы обучения с подкреплением для анализа финансовых временных рядов. Основой системы служат три ветви Transformer с механизмом Diversified Multi-Head Attention (DMH-Attn), позволяющим выявлять сложные паттерны и взаимосвязи между активами. Ранее мы познакомились с теоретическими аспектами фреймворка и реализовали механизмы DMH-Attn, а сегодня поговорим об архитектуре моделей и их обучении.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 25): Тестирование и торговля на нескольких таймфреймах

Возможности Мастера MQL5, которые вам нужно знать (Часть 25): Тестирование и торговля на нескольких таймфреймах

Стратегии, основанные на нескольких таймфреймах, по умолчанию не могут быть протестированы в советниках, собранных с помощью Мастера, из-за архитектуры кода MQL5, используемой в классах сборки. Мы рассмотрим способ обхода этого ограничения для стратегий, которые предполагают использование нескольких таймфреймов на примере квадратичной скользящей средней.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть III)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть III)

Эта часть серии посвящена интеграции WhatsApp с MetaTrader 5 для получения уведомлений. Мы рассмотрим блок-схему для упрощения понимания и обсудим важность мер безопасности при интеграции. Основная цель индикаторов — упростить анализ за счет автоматизации. Они должны включать методы уведомления для оповещения пользователей при выполнении определенных условий.
preview
Критерии тренда в трейдинге

Критерии тренда в трейдинге

Тренды являются важной частью многих торговых стратегий. В этой статье мы рассмотрим некоторые инструменты, используемые для определения трендов и их характеристик. Понимание и правильная интерпретация трендов могут значительно повысить эффективность трейдинга и минимизировать риски.
preview
Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Нейросети в трейдинге: Гибридный торговый фреймворк с предиктивным кодированием (StockFormer)

Предлагаем познакомиться с гибридной торговой системой StockFormer, которая объединят предиктивное кодирование и алгоритмы обучения с подкреплением (RL). Во фреймворке используются 3 ветви Transformer с интегрированным механизмом Diversified Multi-Head Attention (DMH-Attn), который улучшает ванильный модуль внимания за счет многоголового блока Feed-Forward, что позволяет захватывать разнообразные паттерны временных рядов в разных подпространствах.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 24): Скользящие средние

Возможности Мастера MQL5, которые вам нужно знать (Часть 24): Скользящие средние

Скользящие средние — очень распространенный индикатор, который используют и понимают большинство трейдеров. Мы рассмотрим возможные варианты их использования, которые относительно редко используются в советниках, собранных с помощью Мастера MQL5.
preview
Автоматическая оптимизация параметров для торговых стратегий с Python и MQL5

Автоматическая оптимизация параметров для торговых стратегий с Python и MQL5

Существует несколько типов алгоритмов самостоятельной оптимизации торговых стратегий и параметров. Эти алгоритмы используются для автоматического улучшения торговых стратегий на основе исторических и текущих рыночных данных. В этой статье мы рассмотрим один из них на примерах реализаций на Python и MQL5.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Добавляем пользовательскую LLM в торгового робота (Часть 4): Обучение собственной LLM с помощью GPU

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть II)

В статье подробно рассматривается интеграция уведомлений индикаторов MetaTrader 5 в Telegram с использованием возможностей MQL5, Python и API Telegram Bot. Вы сможете применить полученную информацию в своих проектах.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (MASAAT)

Предлагаем познакомиться с мультиагентной адаптивной структурой оптимизации финансового портфеля (MASAAT), которая объединяет механизмы внимания и анализ временных рядов. MASAAT формирует множество агентов, которые анализируют ценовые ряды и направленные изменения, позволяя выявлять значимые колебания цен активов на различных уровнях детализации.
preview
Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

Осваиваем рыночную динамику: Создание советника на основе стратегии поддержки и сопротивления

В статье представлено подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии поддержки и сопротивления. Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа поведения ценового диапазона до управления рисками.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

Нейросети в трейдинге: Мультиагентная адаптивная модель (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASA, который объединяет подходы обучения с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и рисками в турбулентных рыночных условиях. Нами был построен функционал отдельных агентов данного фреймворка, и в этой статье мы продолжим начатую работу, доведя её до логического завершения.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN

Возможности Мастера MQL5, которые вам нужно знать (Часть 23): CNN

Свёрточные нейронные сети (Convolutional Neural Networks, CNNs) — ещё один алгоритм машинного обучения, который, как правило, специализируется на разложении многомерных наборов данных на ключевые составные части. Мы рассмотрим принцип его работы и исследуем возможное применение для трейдеров в очередном классе сигналов Мастера MQL5.
preview
Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Нейросети в трейдинге: Мультиагентная адаптивная модель (MASA)

Предлагаю познакомиться с мультиагентным адаптивным фреймворком MASA, который объединяет обучение с подкреплением и адаптивные стратегии, обеспечивая гармоничный баланс между доходностью и управлением рисками в турбулентных рыночных условиях.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Построение модели для ограничения диапазона сигналов по тренду (Часть 5): Система уведомлений (Часть I)

Мы разобьем основной код MQL5 на отдельные фрагменты, чтобы проиллюстрировать интеграцию Telegram и WhatsApp для получения уведомлений о сигналах от индикатора Trend Constraint, который мы создаем в этой серии статей. Статья будет полезна трейдерам, а также начинающим и опытным разработчикам. Сначала мы рассмотрим настройку уведомлений в MetaTrader 5 и пользу их подключения для пользователя. На основе этого разработчики смогут отметить для себя определенные моменты для дальнейшего применения в своих системах.
preview
Циклы и трейдинг

Циклы и трейдинг

Эта статья посвящена использованию циклов в трейдинге. В ней мы постараемся разобраться, как можно построить торговую стратегию, основываясь на циклических моделях.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (Окончание)

В предыдущей работе мы рассмотрели теоретические аспекты фреймворка PSformer, который включает две основные инновации в архитектуру классического Transformer: механизм совместного использования параметров (Parameter Shared — PS) и внимание к пространственно-временным сегментам (SegAtt). И в данной статье мы продолжаем начатую работу по реализации предложенных подходов средствами MQL5.
preview
Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Нейросети в трейдинге: Параметроэффективный Transformer с сегментированным вниманием (PSformer)

Предлагаем познакомиться с новым фреймворком PSformer, который адаптирует архитектуру ванильного Transformer для решения задач прогнозирования многомерных временных рядов. В основе фреймворка лежат две ключевые инновации: механизм совместного использования параметров (PS) и внимание к пространственно-временным сегментам (SegAtt).
preview
Разработка стратегии Zone Recovery Martingale на MQL5

Разработка стратегии Zone Recovery Martingale на MQL5

В статье подробно рассматриваются шаги для создания советника на основе торгового алгоритма Zone Recovery. Это позволяет автоматизировать систему, экономя время алготрейдеров.