Статьи по программированию и использованию торговых роботов на языке MQL5

icon

Эксперты, созданные для платформы MetaTrader, выполняют самые разнообразные функции, задуманные их разработчиками. Торговые роботы могут отслеживать множество финансовых инструментов 24 часа в сутки, копировать сделки, создавать и отсылать отчеты, анализировать новости и даже предоставлять трейдеру собственный графический интерфейс, разработанный по его заказу.

В статьях предлагаются приемы программирования, математические идеи по обработке данных, советы по созданию и заказу торговых роботов.

Новая статья
последние | лучшие
preview
Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Нейросети в трейдинге: Двойная кластеризация временных рядов (DUET)

Фреймворк DUET предлагает инновационный подход к анализу временных рядов, сочетая временную и канальную кластеризацию для выявления скрытых закономерностей в анализируемых данных. Это позволяет адаптировать модели к изменениям во времени и повысить качество прогнозирования за счет устранения шума.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Возможности Мастера MQL5, которые вам нужно знать (Часть 34): Эмбеддинг цены с нетрадиционной RBM

Ограниченные машины Больцмана (Restricted Boltzmann Machines, RBM) — форма нейронной сети, разработанная в середине 1980-х годов, когда вычислительные ресурсы были непомерно дорогими. Вначале она опиралась на выборку Гиббса (Gibbs Sampling) и контрастивную дивергенцию (Contrastive Divergence) с целью уменьшения размерности или выявления скрытых вероятностей/свойств во входных обучающих наборах данных. Мы рассмотрим, как обратное распространение ошибки (backpropagation) может работать аналогичным образом, когда RBM "встраивает" (embeds) цены в прогнозирующий многослойный перцептрон.
preview
Автоматизация торговли с помощью трендовой стратегии Parabolic SAR на MQL5: Создаем эффективный советник

Автоматизация торговли с помощью трендовой стратегии Parabolic SAR на MQL5: Создаем эффективный советник

В этой статье мы автоматизируем торговлю с помощью стратегии Parabolic SAR на MQL5, создав эффективный советник. Советник будет совершать сделки по трендам, определяемым индикатором Parabolic SAR.
preview
Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands

Переосмысливаем классические стратегии (Часть II): Пробои индикатора Bollinger Bands

В статье рассматривается торговая стратегия, объединяющая линейный дискриминантный анализ (Linear Discriminant Analysis, LDA) с полосами Боллинджера с использованием прогнозов категориальных зон для стратегических сигналов входа в рынок.
preview
Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Разработка динамического советника на нескольких парах (Часть 1): Корреляция и обратная корреляция валютных пар

Динамический советник на нескольких парах использует как корреляционные, так и обратные корреляционные стратегии для оптимизации эффективности торговли. Анализируя рыночные данные в режиме реального времени, он определяет и использует взаимосвязь между валютными парами.
preview
MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 3): Отправка скриншотов графиков с подписями из MQL5 в Telegram

В этой статье мы создадим советник MQL5, который кодирует скриншоты графиков в виде графических данных и отправляет их в чат Telegram посредством HTTP-запросов. Внедрив кодирование и передачу изображений, мы улучшим существующую систему MQL5-Telegram путем добавления визуальной торговой аналитики непосредственно в Telegram.
preview
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Окончание)

Продолжаем интеграцию методов, предложенных авторами фреймворка Attraos, в торговые модели. Напомню, что данный фреймворк использует концепции теории хаоса для решения задач прогнозирования временных рядов, интерпретируя их как проекции многомерных хаотических динамических систем.
preview
Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

Переосмысливаем классические стратегии (Часть V): Анализ нескольких инструментов в валютной паре USDZAR

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить стратегию с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких инструментов с использованием корзины коррелированных ценных бумаг. Сосредоточимся на экзотической валютной паре USDZAR.
preview
Как опередить любой рынок (Часть III): Индекс расходов Visa

Как опередить любой рынок (Часть III): Индекс расходов Visa

В мире больших данных существуют миллионы альтернативных наборов данных, которые потенциально могут улучшить наши торговые стратегии. В этой серии статей мы рассматриваем наиболее информативные общедоступные наборы данных.
preview
Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)

Нейросети в трейдинге: Интеграция теории хаоса в прогнозирование временных рядов (Attraos)

Фреймворк Attraos интегрирует теорию хаоса в долгосрочное прогнозирование временных рядов, рассматривая их как проекции многомерных хаотических динамических систем. Используя инвариантность аттрактора, модель применяет реконструкцию фазового пространства и динамическую память с несколькими разрешениями для сохранения исторических структур.
preview
Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

Переосмысливаем классические стратегии (Часть VI): Анализ нескольких таймфреймов

В данной серии статей мы вновь рассматриваем классические стратегии, чтобы выяснить, можно ли улучшить их с помощью ИИ. В сегодняшней статье мы рассмотрим популярную стратегию анализа нескольких таймфреймов, чтобы оценить, можно ли улучшить эту стратегию с помощью ИИ.
preview
Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)

Разрабатываем мультивалютный советник (Часть 24): Подключаем новую стратегию (I)

В данной статье рассмотрим как нам подключить новую стратегию к созданной системе автоматической оптимизации. Посмотрим, какие советники нам понадобится создать и можно ли будет обойтись без изменений файлов библиотеки Advisor или свести необходимые изменения к минимуму.
preview
Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

Объединение стратегий фундаментального и технического анализа на языке MQL5 для начинающих

В этой статье обсудим, как эффективно интегрировать следование тренду и фундаментальные принципы в один советник для создания более надежной стратегии. Статья продемонстрирует, насколько просто любой желающий может приступить к созданию собственных торговых алгоритмов с помощью языка MQL5.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 33): Ядра гауссовского процесса

Возможности Мастера MQL5, которые вам нужно знать (Часть 33): Ядра гауссовского процесса

Ядра гауссовского процесса (Gaussian Process Kernels) — это ковариационная функция нормального распределения, которая может быть использована в прогнозировании. Мы исследуем этот уникальный алгоритм в пользовательском классе сигналов MQL5, чтобы увидеть, можно ли использовать его в качестве основного сигнала входа и выхода.
preview
Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)

Разрабатываем мультивалютный советник (Часть 23): Приводим в порядок конвейер этапов автоматической оптимизации проектов (II)

Мы стремимся создать систему автоматической периодической оптимизации торговых стратегий, используемых в одном итоговом советнике. С развитием система становится всё более сложной, поэтому время от времени надо смотреть на неё в целом с целью выявления узких мест и неоптимальных решений.
preview
Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Нейросети в трейдинге: Гибридные модели последовательностей графов (Окончание)

Продолжаем изучение гибридных моделей последовательностей графов (GSM++), которые интегрируют преимущества различных архитектур, обеспечивая высокую точность анализа и эффективное распределение вычислительных ресурсов. Эти модели эффективно выявляют скрытые закономерности, снижая влияние рыночного шума и повышая качество прогнозирования.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Возможности Мастера MQL5, которые вам нужно знать (Часть 32): Регуляризация

Регуляризация — это форма штрафования функции потерь пропорционально дискретному весу, применяемому ко всем слоям нейронной сети. Мы оценим значимость некоторых форм регуляризации, протестировав советник, собранный в Мастере.
preview
Как функции столетней давности могут обновить ваши торговые стратегии

Как функции столетней давности могут обновить ваши торговые стратегии

В этой статье речь пойдет о функциях Радемахера и Уолша. Мы исследуем способы применения этих функций для анализа финансовых временных рядов, а также рассмотрим различные варианты их применения в трейдинге.
preview
Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)

Нейросети в трейдинге: Гибридные модели последовательностей графов (GSM++)

Гибридные модели последовательностей графов (GSM++) объединяют сильные стороны различных архитектур, обеспечивая высокую точность анализа данных и оптимизацию вычислительных затрат. Эти модели эффективно адаптируются к динамическим рыночным данным, улучшая представление и обработку финансовой информации.
preview
Интеграция MQL5: Python

Интеграция MQL5: Python

Python — известный и популярный язык программирования со множеством функций, особенно в областях финансов, науки о данных, искусственного интеллекта и машинного обучения. Python — мощный инструмент, который может быть полезен и в трейдинге. MQL5 позволяет нам использовать этот мощный язык для эффективного достижения наших целей. В этой статье мы рассмотрим некоторые базовые сведения о Python и расскажем, как его можно интегрировать в MQL5.
preview
Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)

Построение модели для ограничения диапазона сигналов по тренду (Часть 8): Разработка советника (I)

В этой статье мы разработаем наш первый советник на MQL5 на основе индикатора, который мы создали в предыдущей статье. Мы рассмотрим все функции, необходимые для автоматизации процесса, включая управление рисками. Это позволит перейти от ручного выполнения сделок к автоматизированным системам.
preview
Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Нейросети в трейдинге: Двухмерные модели пространства связей (Окончание)

Продолжаем знакомство с инновационным фреймворком Chimera — двухмерной моделью пространства состояний, использующей нейросетевые технологии для анализа многомерных временных рядов. Этот метод обеспечивает высокую точность прогнозирования при низких вычислительных затратах.
preview
Нейросети в трейдинге: Двухмерные модели пространства связей (Chimera)

Нейросети в трейдинге: Двухмерные модели пространства связей (Chimera)

Откройте для себя инновационный фреймворк Chimera — двухмерную модель пространства состояний, использующую нейросети для анализа многомерных временных рядов. Этот метод предлагает высокую точность с низкими вычислительными затратами, превосходя традиционные подходы и архитектуры Transformer.
preview
Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек

Разрабатываем мультивалютный советник (Часть 22): Начало перехода на горячую замену настроек

Если мы взялись за автоматизацию проведения периодической оптимизации, то надо позаботиться и об автоматическом обновлении настроек советников, которые уже работают на торговом счёте. Также это должно позволять запускать советник в тестере стратегий и менять его настройки в рамках одного прохода.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Возможности Мастера MQL5, которые вам нужно знать (Часть 31): Выбор функции потерь

Функция потерь (Loss Function) — это ключевая метрика алгоритмов машинного обучения, которая обеспечивает обратную связь для процесса обучения, количественно определяя, насколько хорошо данный набор параметров работает по сравнению с предполагаемым целевым значением. Мы рассмотрим различные форматы этой функции в пользовательском классе Мастера MQL5.
preview
Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

Стратегия торговли каскадами ордеров на основе пересечений EMA для MetaTrader 5

В статье представлен автоматизированный алгоритм на основе пересечений EMA для MetaTrader 5. Подробная информация обо всех аспектах демонстрации советника на языке MQL5 и его тестирования в MetaTrader 5, от анализа характеристик ценового диапазона до управления рисками.
preview
MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 2): Отправка сигналов из MQL5 в Telegram

В этой статье мы создадим MQL5-советник, интегрированный с Telegram, который отправляет в мессенджер сигналы пересечения скользящих средних. Мы подробно опишем процесс генерации торговых сигналов на основе пересечений скользящих средних, реализуем необходимый код на языке MQL5 и обеспечим бесперебойную работу интеграции. В результате мы получим систему, которая отправляет торговые оповещения в реальном времени непосредственно в групповой чат Telegram.
preview
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt (Окончание)

Продолжаем изучение фреймворка мультизадачного обучения на основе ResNeXt, который отличается модульностью, высокой вычислительной эффективностью и способностью выявлять устойчивые паттерны в данных. Использование единого энкодера и специализированных "голов" снижает риск переобучения модели и повышает качество прогнозов.
preview
MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram

MQL5-советник, интегрированный в Telegram (Часть 1): Отправка сообщений из MQL5 в Telegram

В этой статье мы создадим советник на языке MQL5, отправляющий сообщения в Telegram с помощью бота. Мы настроим необходимые параметры, включая API-токен бота и идентификатор чата, а затем выполним HTTP-запрос POST для доставки сообщений. Затем мы обработаем ответ, чтобы обеспечить успешную доставку, и устраним возможные ошибки.
preview
Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности

Разработка интерактивного графического пользовательского интерфейса на MQL5 (Часть 2): Добавление элементов управления и адаптивности

Расширение панели графического интерфейса на MQL5 с помощью динамических функций может существенно улучшить торговый опыт пользователей. Благодаря включению интерактивных элементов, эффектов наведения и обновлению данных в реальном времени эта панель становится мощным инструментом современного трейдера.
preview
Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt

Нейросети в трейдинге: Мультизадачное обучение на основе модели ResNeXt

Фреймворк многозадачного обучения на основе ResNeXt оптимизирует анализ финансовых данных, учитывая их высокую размерность, нелинейность и временные зависимости. Использование групповой свертки и специализированных голов позволяет модели эффективно извлекать ключевые признаки исходных данных.
preview
Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5

Реализация советника Deus: Автоматическая торговля с RSI и скользящими средними в MQL5

В статье описываются шаги по внедрению советника Deus на основе индикаторов RSI и скользящей средней для управления автоматической торговлей.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Возможности Мастера MQL5, которые вам нужно знать (Часть 30): Пакетная нормализация в машинном обучении

Пакетная нормализация — это предварительная обработка данных перед их передачей в алгоритм машинного обучения, например, в нейронную сеть. При этом всегда следует учитывать тип активации, который будет использоваться алгоритмом. Мы рассмотрим различные подходы, которые можно использовать для извлечения выгоды с помощью советника, собранного в Мастере.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Окончание)

Мы продолжаем построение модели иерархического двухбашенного трансформера Hidformer, который предназначен для анализа и прогнозирования сложных многомерных временных рядов. В данной статье мы доведем начатую ранее работу до логического завершения с тестированием модели на реальных исторических данных.
preview
Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (I) - Тонкая настройка

Добавляем пользовательскую LLM в торгового робота (Часть 5): Разработка и тестирование торговой стратегии с помощью LLM (I) - Тонкая настройка

Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
preview
Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Нейросети в трейдинге: Иерархический двухбашенный трансформер (Hidformer)

Предлагаем познакомиться с фреймворком иерархического двухбашенного трансформера (Hidformer), который был разработан для прогнозирования временных рядов и анализа данных. Авторы фреймворка предложили несколько улучшений к архитектуре Transformer, что позволило повысить точность прогнозов и снизить потребление вычислительных ресурсов.
preview
Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Как интегрировать в советник концепции Smart Money (BOS) в сочетании с индикатором RSI

Концепция Smart Money (Break of Structure) в сочетании с индикатором RSI для принятия обоснованных решений в автоматической торговле на основе структуры рынка.
preview
Создаем динамическую мультисимвольную мультипериодную панель индекса относительной силы (RSI) в MQL5

Создаем динамическую мультисимвольную мультипериодную панель индекса относительной силы (RSI) в MQL5

В статье рассмотрена разработка динамической мультисимвольной мультипериодной панели индикатора RSI в MQL5. Панель призвана предоставлять трейдерам значения RSI в реальном времени по различным символам и таймфреймам. Панель будет оснащена интерактивными кнопками, обновлениями в реальном времени и цветовыми индикаторами, помогающими трейдерам принимать обоснованные решения.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Возможности Мастера MQL5, которые вам нужно знать (Часть 29): Темпы обучения и многослойные перцептроны

Мы завершаем рассмотрение чувствительности темпа обучения к производительности советников изучением адаптируемых темпов обучения. Темпы должны быть настроены для каждого параметра в слое в процессе обучения, поэтому нам необходимо оценить потенциальные преимущества по сравнению с ожидаемыми потерями производительности.
preview
Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5

Машинное обучение и Data Science (Часть 27): Сверточные нейросети (CNN) в торговых роботах для MetaTrader 5

Сверточные нейронные сети (CNN) используются для обнаружения закономерностей в изображениях и видео. При этом их применение намного шире. В этой статье мы рассмотрим применимость сверточных нейросетей для выявления ценных закономерностей на финансовых рынках и генерации торговых сигналов для торговых роботов в MetaTrader 5. Поговорим о том, как можно использовать этот метод глубокого машинного обучения для принятия обоснованных торговых решений.