Разрабатываем мультивалютный советник (Часть 20): Приводим в порядок конвейер этапов автоматической оптимизации проектов (I)
Мы создали уже довольно много компонентов, которые помогают организовать процесс автоматической оптимизации. При создании мы придерживались традиционной цикличности: от создания минимального рабочего кода до рефакторинга и получения улучшенного кода. Пришло время заняться наведением порядка в нашей базе данных, которая тоже является ключевым компонентом в создаваемой системе.
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (Окончание)
SAMformer предлагает решение ключевых проблем Transformer в долгосрочном прогнозировании временных рядов, включая сложность обучения и слабое обобщение на малых выборках. Его неглубокая архитектура и оптимизация с учетом резкости обеспечивают избегание плохих локальных минимумов. В данной статье мы продолжим реализацию подходов с использованием MQL5 и оценим их практическую ценность.
Нейросети в трейдинге: Повышение эффективности Transformer путем снижения резкости (SAMformer)
Обучение моделей Transformer требует больших объемов данных и часто затруднено из-за слабой способности моделей к обобщению на малых выборках. Фреймворк SAMformer помогает решить эту проблему, избегая плохих локальных минимумов. И повышает эффективность моделей даже на ограниченных обучающих выборках.
Нейросети в трейдинге: Оптимизация Transformer для прогнозирования временных рядов (LSEAttention)
Фреймворк LSEAttention предлагает пути совершенствования архитектуры Transformer, и был разработан специально для долгосрочного прогнозирования многомерных временных рядов. Предложенные авторами метода подходы позволяют решить проблемы энтропийного коллапса и нестабильности обучения, характерные для ванильного Transformer.
Торговый инструментарий MQL5 (Часть 1): Разработка EX5-библиотеки для управления позициями
Мы рассмотрим создание инструментария разработчика для управления позициями с помощью MQL5. В этой статье я покажу, как создать библиотеку функций (ex5), которая будет выполнять как простые, так и сложные операции по управлению позициями, включая автоматическую обработку и сообщение о различных ошибках, возникающих при управлении позициями с помощью MQL5.
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (Окончание)
Применение анизотропных диффузионных процессов для кодирования исходных данных в гиперболическом латентном пространстве, как это предложено в фреймворке HypDIff, способствует сохранению топологических особенностей текущей рыночной ситуации, и повышает качество её анализа. В предыдущей статье мы начали реализацию предложенных подходов средствами MQL5. И сегодня продолжим начатую работу, доведя ее до логического завершения.
Пошаговая инструкция для торговли по стратегии Break of Structure (BoS)
Подробное руководство по разработке автоматизированного торгового алгоритма на основе стратегии Break of Structure (BoS, прорыв структуры). Дана подробная информация по всем аспектам создания советника на MQL5 и его тестирования в MetaTrader 5 — от анализа ценовых уровней поддержки и сопротивления до управления рисками
Нейросети в трейдинге: Гиперболическая модель латентной диффузии (HypDiff)
Статья рассматривает способы кодирования исходных данных в гиперболическом латентном пространстве через анизотропные диффузионные процессы. Это помогает точнее сохранять топологические характеристики текущей рыночной ситуации и повышает качество ее анализа.
Нейросети в трейдинге: Модели направленной диффузии (DDM)
Предлагаем познакомиться с моделями направленной диффузии, которые используют анизотропные и направленные шумы, зависящие от данных, в процессе прямой диффузии для захвата значимых графовых представлений.
Возможности Мастера MQL5, которые вам нужно знать (Часть 22): Условные генеративно-состязательные сети (cGAN)
Генеративно-состязательные сети — это пара нейронных сетей, которые обучаются друг на друге для получения более точных результатов. Мы рассмотрим условный тип этих сетей в контексте их возможного применения в прогнозировании финансовых временных рядов в рамках класса сигналов советника.
Нейросети в трейдинге: Адаптивное представление графов (NAFS)
Предлагаем познакомиться с методом NAFS (Node-Adaptive Feature Smoothing) — это непараметрический подход к созданию представлений узлов, который не требует обучения параметров. NAFS извлекает характеристики каждого узла, учитывая его соседей, и затем адаптивно комбинирует эти характеристики для формирования конечного представления.
Разрабатываем мультивалютный советник (Часть 19): Создаём этапы, реализованные на Python
Пока что мы рассматривали автоматизацию запуска последовательных процедур оптимизации советников исключительно в штатном тестере стратегий. Но что делать, если между такими запусками нам хотелось бы выполнить некоторую обработку уже полученных данных, используя другие средства? Попробуем добавить возможность создания новых этапов оптимизации, выполняемых программами, написанными на Python.
Модифицированный советник Grid-Hedge в MQL5 (Часть IV): Оптимизация простой сеточной стратегии (I)
В четвертой части мы вернемся к советникам Simple Hedge и Simple Grid, разработанным ранее. В этот раз будем совершенствовать советник Simple Hedge. Будем использовать математический анализ и подход грубой силы (brute force) чтобы оптимизировать стратегию. Эта статья углубляется в математическую оптимизацию стратегии и закладывает основу для будущего исследования оптимизации на основе кода в последующих частях.
Нейросети в трейдинге: Контрастный Трансформер паттернов (Окончание)
В последней статье нашей серии мы рассмотрели фреймворк Atom-Motif Contrastive Transformer (AMCT), который использует контрастное обучение для выявления ключевых паттернов на всех уровнях — от базовых элементов до сложных структур. В этой статье мы продолжаем реализацию подходов AMCT средствами MQL5.
Нейросети в трейдинге: Контрастный Трансформер паттернов
Контрастный Transformer паттернов осуществляет анализ рыночных ситуаций, как на уровне отдельных свечей, так и целых паттернов. Что способствует повышению качества моделирования рыночных тенденций. А применение контрастного обучения для согласования представлений свечей и паттернов ведет к саморегуляции и повышению точности прогнозов.
Нейросети в трейдинге: Анализ рыночной ситуации с использованием Трансформера паттернов
В анализе рыночной ситуации нашими моделями ключевым элементом является свеча. Тем не менее давно известно, что свечные паттерны могут помочь в прогнозировании будущих ценовых движений. И в этой статье мы познакомимся с методом, который позволяет интегрировать оба этих подхода.
Как опередить любой рынок (Часть II): Прогнозирование технических индикаторов
Знаете ли вы, что можно добиться большей точности, прогнозируя определенные технические индикаторы, чем саму цену торгуемого символа? В статье рассматривается, как использовать это знание для разработки более эффективных торговых стратегий.
Нейросети в трейдинге: Transformer с относительным кодированием
Самоконтролируемое обучение может оказаться эффективным способом анализа больших объемов неразмеченных данных. Основным фактором успеха является адаптация моделей под особенности финансовых рынков, что способствует улучшению результативности традиционных методов. Эта статья познакомит вас с альтернативным механизмом внимания, который позволяет учитывать относительные зависимости и взаимосвязи между исходными данными.
Добавляем пользовательскую LLM в торгового робота (Часть 3): Обучение собственной LLM с помощью CPU
Языковые модели (LLM) являются важной частью быстро развивающегося искусственного интеллекта, поэтому нам следует подумать о том, как интегрировать мощные LLM в нашу алгоритмическую торговлю. Большинству людей сложно настроить эти модели в соответствии со своими потребностями, развернуть их локально, а затем применить к алгоритмической торговле. В этой серии статей будет рассмотрен пошаговый подход к достижению этой цели.
Нейросети в трейдинге: Управляемая сегментация (Окончание)
Продолжаем, начатую в предыдущей статье работу, по построению фреймворка RefMask3D средствами MQL5. Данный фреймворк разработан для всестороннего изучения мультимодального взаимодействия и анализа признаков в облаке точек, с последующей идентификацией целевого объекта на основе описания, предоставленного на естественном языке.
Переосмысливаем классические стратегии: Нефть
В этой статье мы пересмотрим классическую стратегию торговли сырой нефтью с целью ее усовершенствования за счет использования алгоритмов машинного обучения с учителем. Мы построим модель наименьших квадратов для прогнозирования будущих цен на нефть марки Brent на основе разницы между ценами на нефть марки Brent и WTI. Наша цель — найти опережающий индикатор будущих изменений цен на нефть марки Brent.
Прогнозирование валютных курсов с использованием классических методов машинного обучения: Логит и Пробит модели
Предпринята попытка построить торговый эксперт для предсказания котировок валютных курсов. За основу алгоритма взяты классические модели классификации — логистическая и пробит регрессия. В качестве фильтра торговых сигналов используется критерий отношения правдоподобия.
Нейросети в трейдинге: Управляемая сегментация
Предлагаем познакомиться с методом комплексного мультимодального анализа взаимодействия и понимания признаков.
Введение в MQL5 (Часть 7): Руководство для начинающих по созданию советников и использованию кода от ИИ в MQL5
В этой статье мы представим полное руководство для начинающих по созданию советников (EA) на MQL5. Вы найдете пошаговые инструкции по созданию экспертов с использованием псевдокода и возможностей кода, сгенерированного ИИ. Эта статья предназначена для тех, кто только начинает свой пусть в алготрейдинге, а также для всех, кто хочет улучшить навыки разработки эффективных советников.
Разрабатываем мультивалютный советник (Часть 18): Автоматизация подбора групп с учётом форвард-периода
Продолжим автоматизировать шаги, которые ранее мы выполняли вручную. В этот раз вернёмся к автоматизации второго этапа, то есть выбора оптимальной группы одиночных экземпляров торговых стратегий, дополнив его возможностью учитывать результаты экземпляров на форвард-периоде.
Построение модели для ограничения диапазона сигналов по тренду (Часть 3): Обнаружение изменений трендов при использовании системы
В этой статье рассматривается, как экономические новости, поведение инвесторов и различные факторы могут влиять на развороты рыночных трендов. Статья включает видео с пояснениями и внедряет MQL5-код в программу для обнаружения разворотов тренда, оповещения и принятия соответствующих мер в зависимости от рыночных условий.
Возможности Мастера MQL5, которые вам нужно знать (Часть 20): Символьная регрессия
Символьная регрессия — это форма регрессии, которая начинается с минимальных или нулевых предположений относительно того, как будет выглядеть базовая модель, отображающая изучаемые наборы данных. Несмотря на то, что ее можно реализовать с помощью байесовских методов или нейронных сетей, мы рассмотрим, как реализация с использованием генетических алгоритмов может помочь настроить класс сигналов советника, пригодный для использования в Мастере MQL5.
Нейросети в трейдинге: Сегментация данных на основе уточняющих выражений
В процессе анализа рыночной ситуации мы делим её на отдельные сегменты, выявляя ключевые тенденции. Однако традиционные методы анализа часто фокусируются на одном аспекте, что ограничивает восприятие. В данной статье мы познакомимся с методом, позволяющем выделять несколько объектов, что даёт более полное и многослойное понимание ситуации.
Возможности Мастера MQL5, которые вам нужно знать (Часть 19): Байесовский вывод
Байесовский вывод — это применение теоремы Байеса для обновления вероятностной гипотезы по мере поступления новой информации. Это намекает на необходимость адаптации в анализе временных рядов, и поэтому мы рассмотрим, как мы могли бы использовать его при создании пользовательских классов не только применительно к сигналам, но и для управления капиталом и трейлинг-стопами.
Нейросети в трейдинге: Безмасочный подход к прогнозированию ценового движения
В данной статье предлагаем познакомиться с методом Mask-Attention-Free Transformer (MAFT) и его применение в области трейдинга. В отличие от традиционных Transformer, требующих маскирования данных при обработке последовательностей, MAFT оптимизирует процесс внимания, устраняя необходимость в маскировании, что значительно повышает вычислительную эффективность.
Нейросети в трейдинге: Superpoint Transformer (SPFormer)
В данной статья предлагаем познакомиться с методом сегментации 3D-люъектов на основе Superpoint Transformer (SPFormer), который устраняет необходимость в промежуточной агрегации данных. Что ускоряет процесс сегментации и повышает производительность модели.
Статистический арбитраж с прогнозами
Мы рассмотрим статистический арбитраж, выполним поиск символов корреляции и коинтеграции с помощью Python, создадим индикатор для коэффициента Пирсона, а также советник для торговли статистическим арбитражем с прогнозами, сделанными с помощью Python и моделей ONNX.
Торговля на разрывах справедливой стоимости (FVG)/дисбалансах шаг за шагом: Подход Smart Money
Пошаговое руководство по созданию и реализации автоматизированного торгового алгоритма на основе разрывов справедливой стоимости (Fair Value Gap, FVG) на языке MQL5. Подробное руководство может быть полезно как новичкам, так и опытным трейдерам.
Построение модели для ограничения диапазона сигналов по тренду (Часть 2): Объединение нативных индикаторов
В статье рассматривается использование встроенных индикаторов MetaTrader 5 для отсеивания нетрендовых сигналов. Продолжая предыдущую статью, мы рассмотрим, как это сделать с помощью кода MQL5, чтобы воплотить нашу идею в виде программы.
Нейросети в трейдинге: Изучение локальной структуры данных
Эффективное выявление и сохранение локальной структуры рыночных данных в условиях шума является важной задачей в трейдинге. Использование механизма Self-Attention показало хорошие результаты в обработке подобных данных, но классический метод не учитывают локальные особенности исходной структуры. В данной статье я предлагаю познакомиться с алгоритмом, способным учитывать эти структурные зависимости.
Нейросети в трейдинге: Обнаружение объектов с учетом сцены (HyperDet3D)
Предлагаем вам познакомиться с новым подход обнаружения объектов при помощи гиперсетей. Гиперсети могут генерировать весовые коэффициенты для основной модели, что позволяет учитывать особенности текущего состояния рынка. Такой подход позволяет улучшить точность прогнозирования, адаптируя модель к различным торговым условиям.
Возможности Мастера MQL5, которые вам нужно знать (Часть 17): Мультивалютная торговля
По умолчанию торговля несколькими валютами недоступна при сборке советника с помощью Мастера. Мы рассмотрим два возможных приема, к которым могут прибегнуть трейдеры, желающие проверить свои идеи на нескольких символах одновременно.
Нейросети в трейдинге: Transformer для облака точек (Pointformer)
В данной статье мы поговорим об алгоритмах использования методов внимания при решении задач обнаружения объектов в облаке точек. Обнаружение объектов в облаках точек имеет важное значение для многих реальных приложений.
Нейросети в трейдинге: Иерархическое обучение признаков облака точек
Продолжаем изучение алгоритмов для извлечения признаков из облака точек. И в данной статье мы познакомимся с механизмами повышения эффективности метода PointNet.
Построение модели для ограничения диапазона сигналов по тренду (Часть 1): Для советников и технических индикаторов
Статья рассчитана на начинающих и профессиональных разработчиков MQL5. Она предоставляет фрагмент кода для определения индикаторов, генерирующих сигналы, и их ограничения трендами на более старших таймфреймах. Таким образом, трейдеры могут улучшить свои стратегии, включив в них более широкую перспективу рынка, что приведет к получению потенциально более надежных торговых сигналов.