
Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)
Continuamos a implementação das abordagens propostas pelos autores do framework FinCon. O FinCon é um sistema multiagente baseado em grandes modelos de linguagem (LLM). Hoje vamos implementar os módulos necessários e realizar testes abrangentes do modelo com dados históricos reais.

Como funções de cem anos atrás podem atualizar suas estratégias de trading
Neste artigo, vamos falar sobre as funções de Rademacher e Walsh. Vamos explorar formas de aplicar essas funções na análise de séries temporais financeiras, além de considerar diferentes maneiras de usá-las no trading.

Redes neurais em trading: Modelos de difusão direcionada (DDM)
Apresentamos os modelos de difusão direcionada, que utilizam ruídos anisotrópicos e direcionais, dependentes dos dados, no processo de propagação para frente, para capturar representações de grafos significativas.

Criando um painel administrativo de negociação em MQL5 (Parte III): Expansão das classes incorporadas para gerenciamento de temas (II)
Vamos expandir a biblioteca existente Dialog, incorporando nela a lógica de gerenciamento de temas. Além disso, vamos integrar os métodos de troca de temas nas classes CDialog, CEdit e CButton, utilizadas no nosso projeto de painel administrativo.

Exemplo de CNA (Análise de Rede de Causalidade), SMOC (Controle Otimizado com Modelo Estocástico) e Teoria dos Jogos de Nash com Aprendizado Profundo
Adicionaremos Aprendizado Profundo a esses três exemplos que foram publicados em artigos anteriores e compararemos os resultados com os anteriores. O objetivo é aprender como adicionar Deep Learning a outros EAs.

Modelos polinomiais no trading
Este artigo é dedicado aos polinômios ortogonais. Seu uso pode se tornar a base para uma análise mais precisa e eficaz das informações do mercado, permitindo que o trader tome decisões mais fundamentadas.

Previsão de taxas de câmbio usando métodos clássicos de aprendizado de máquina: Modelos Logit e Probit
Tentou-se criar um EA para prever cotações de taxas de câmbio. Como base para o algoritmo, foram adotados modelos clássicos de classificação, como regressão logística e probit. O critério de razão de verossimilhança é utilizado para filtrar os sinais de negociação.

Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado
Este artigo apresenta um guia abrangente para implementar um sistema de negociação sofisticado utilizando Análise de Rede de Causalidade (CNA) e Autorregressão Vetorial (VAR) em MQL5. Ele aborda o embasamento teórico desses métodos, fornece explicações detalhadas das funções-chave no algoritmo de negociação e inclui exemplos de código para implementação.

Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)
Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.

Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)
Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.

Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)
Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.

Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)
Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.

Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)
Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.

Redes neurais em trading: Treinamento multitarefa baseado no modelo ResNeXt (Conclusão)
Seguimos com a exploração do framework de aprendizado multitarefa baseado na arquitetura ResNeXt, que se destaca pela modularidade, alta eficiência computacional e pela capacidade de identificar padrões estáveis nos dados. O uso de um codificador único e de "cabeças" especializadas reduz o risco de overfitting do modelo e aumenta a qualidade das previsões.

Repensando estratégias clássicas (Parte X): A IA pode operar o MACD?
Junte-se a nós em uma análise empírica do indicador MACD para verificar se a aplicação da inteligência artificial à estratégia que inclui esse indicador pode aumentar a precisão da previsão do par EURUSD. Avaliamos simultaneamente se é mais fácil prever o próprio indicador do que o preço, bem como se o valor do indicador permite prever os níveis futuros de preço. Forneceremos as informações necessárias para que você decida se vale a pena investir seu tempo integrando o MACD às suas estratégias de trading com o uso de inteligência artificial.

Criando um painel MQL5 interativo usando a classe Controls (Parte 1): Configurando o painel
Neste artigo, vamos criar um painel de negociação interativo utilizando a classe Controls no MQL5, voltado para otimizar as operações de trading. O painel conterá um cabeçalho, botões de navegação para trading, fechamento e informações, além de botões especializados para envio de ordens e gerenciamento de posições. Ao final do artigo, teremos um painel básico pronto para futuras melhorias.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos
Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.

MQL5 Trading Toolkit (Parte 3): Desenvolvimento de uma biblioteca EX5 para gerenciamento de ordens pendentes
Você aprenderá como desenvolver e implementar uma biblioteca EX5 abrangente para ordens pendentes em seu código ou projetos MQL5. Vamos analisar como importar e implementar essa biblioteca como parte de um painel de negociação ou interface gráfica do usuário (GUI). O painel de ordens do EA permitirá aos usuários abrir, acompanhar e excluir ordens pendentes por número mágico diretamente na interface gráfica exibida na janela do gráfico.