Artigos com exemplos de como programar robôs de negociação na linguagem MQL5

icon

Os experts são o coração da negociação automatizada e o objetivo de toda pessoa que programa estratégias de trading. Você pode criar seu próprio robô de negociação com a ajuda dos artigos desta seção. Os principiantes podem seguir passo a passo todas as etapas dos sistemas de negociação automatizados: criação, depuração e teste.

Os artigos ensinam não apenas como programar em MQL5, mas também mostram como implementar quaisquer ideias e técnicas de negociação. Aprenda a programar um trailing stop, a aplicar o gerenciamento de dinheiro, a calcular o valor de um indicador e muito, muito mais.

Novo artigo
recentes | melhores
preview
Redes neurais em trading: Transformer contrativo de padrões (Conclusão)

Redes neurais em trading: Transformer contrativo de padrões (Conclusão)

No último artigo da série, analisamos o framework Atom-Motif Contrastive Transformer (AMCT), que utiliza aprendizado contrastivo para identificar padrões-chave em todos os níveis, desde os elementos básicos até estruturas complexas. Neste artigo, continuamos a implementar as abordagens do AMCT com recursos do MQL5.
preview
Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)

Redes neurais em trading: Hierarquia de habilidades para comportamento adaptativo de agentes (HiSSD)

Apresentamos o framework HiSSD, que combina aprendizado hierárquico e abordagens multiagente para a criação de sistemas adaptativos. Neste trabalho, exploramos em detalhe como essa abordagem inovadora ajuda a identificar padrões ocultos nos mercados financeiros e a otimizar estratégias de trading em condições de descentralização.
preview
Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)

Redes neurais em trading: Extração eficiente de características para classificação precisa (Mantis)

Conheça o Mantis, um modelo fundamental leve para classificação de séries temporais baseado em Transformer, com pré-treinamento contrastivo e atenção híbrida, que garantem precisão recorde e escalabilidade.
preview
Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 7): Análise de Comandos para Automação de Indicadores em Gráficos

Neste artigo, exploramos como integrar comandos do Telegram com MQL5 para automatizar a adição de indicadores em gráficos de negociação. Cobrimos o processo de análise (parsing) dos comandos dos usuários, sua execução no MQL5 e o teste do sistema para garantir uma negociação baseada em indicadores de forma fluida.
preview
Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Redes neurais em trading: Sistema multiagente com validação conceitual (FinCon)

Apresentamos o framework FinCon, que é um sistema multiagente baseado em grandes modelos de linguagem (LLM). O framework utiliza reforço verbal conceitual para melhorar a tomada de decisões e o gerenciamento de riscos, permitindo realizar diversas tarefas financeiras de forma eficiente.
preview
Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Redes neurais em trading: Aprendizado dependente de contexto com memória (Conclusão)

Estamos finalizando a implementação do framework MacroHFT para trading de alta frequência com criptomoedas, que utiliza aprendizado por reforço dependente de contexto e memória para se adaptar às condições dinâmicas do mercado. E para concluir este artigo, será realizado um teste com os métodos implementados utilizando dados históricos reais, a fim de avaliar sua eficácia.
preview
Redes neurais em trading: Segmentação guiada (Conclusão)

Redes neurais em trading: Segmentação guiada (Conclusão)

Damos continuidade ao trabalho iniciado no artigo anterior sobre a construção do framework RefMask3D utilizando MQL5. Esse framework foi desenvolvido para um estudo aprofundado da interação multimodal e da análise de características em nuvens de pontos, com posterior identificação do objeto-alvo com base em uma descrição fornecida em linguagem natural.
preview
Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Redes neurais em trading: Agente multimodal com ferramentas complementares (FinAgent)

Apresentamos o framework do agente multimodal para negociação financeira FinAgent, projetado para analisar dados de diferentes tipos que refletem a dinâmica do mercado e padrões históricos de negociação.
preview
Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

Redes neurais em trading: Modelos com uso de wavelet transform e atenção multitarefa (Conclusão)

No artigo anterior, exploramos os fundamentos teóricos e começamos a implementar as abordagens do framework Multitask-Stockformer, que combina wavelet transform e o modelo multitarefa Self-Attention. Damos continuidade à implementação dos algoritmos desse framework e avaliamos sua eficácia com dados históricos reais.
preview
Redes neurais em trading: Agente com memória em camadas

Redes neurais em trading: Agente com memória em camadas

As abordagens de memória em camadas, que imitam os processos cognitivos humanos, permitem processar dados financeiros complexos e se adaptar a novos sinais, o que contribui para decisões de investimento mais eficazes em mercados dinâmicos.
preview
De Iniciante a Especialista: Depuração Colaborativa em MQL5

De Iniciante a Especialista: Depuração Colaborativa em MQL5

A resolução de problemas pode estabelecer uma rotina concisa para dominar habilidades complexas, como programar em MQL5. Essa abordagem permite que você se concentre na resolução de problemas enquanto desenvolve suas habilidades ao mesmo tempo. Quanto mais problemas você resolver, mais conhecimento avançado será transferido para o seu cérebro. Pessoalmente, acredito que a depuração é a forma mais eficaz de dominar a programação. Hoje, vamos percorrer o processo de limpeza de código e discutir as melhores técnicas para transformar um programa desorganizado em um funcional e limpo. Leia este artigo e descubra insights valiosos.
preview
De Python para MQL5: Uma Jornada em Sistemas de Trading Inspirados na Computação Quântica

De Python para MQL5: Uma Jornada em Sistemas de Trading Inspirados na Computação Quântica

O artigo explora o desenvolvimento de um sistema de trading inspirado na computação quântica, fazendo a transição de um protótipo em Python para uma implementação em MQL5 para trading no mundo real. O sistema utiliza princípios da computação quântica, como superposição e emaranhamento, para analisar estados de mercado, embora rode em computadores clássicos usando simuladores quânticos. Os principais recursos incluem um sistema de três qubits para analisar oito estados de mercado simultaneamente, períodos de análise de 24 horas e sete indicadores técnicos para análise de mercado. Embora as taxas de acurácia possam parecer modestas, elas fornecem uma vantagem significativa quando combinadas com estratégias adequadas de gerenciamento de risco.
preview
Ondas triangulares e em forma de serra: ferramentas para o trader

Ondas triangulares e em forma de serra: ferramentas para o trader

Um dos métodos de análise técnica é a análise de ondas. Neste artigo, vamos examinar ondas de um tipo um pouco incomum, nomeadamente as triangulares e as em forma de serra. Com base nessas ondas, é possível construir vários indicadores técnicos que permitem analisar o movimento do preço no mercado.
preview
Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Redes neurais em trading: Modelo hiperbólico de difusão latente (HypDiff)

Esse artigo analisa formas de codificar dados brutos no espaço latente hiperbólico por meio de processos de difusão anisotrópicos. Isso ajuda a preservar com mais precisão as características topológicas da situação atual do mercado e melhora a qualidade de sua análise.
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Conclusão)

Damos continuidade ao estudo do framework inovador Chimera, um modelo bidimensional do espaço de estados que utiliza tecnologias de redes neurais para análise de séries temporais multidimensionais. Esse método garante alta precisão de previsão com baixo custo computacional.
preview
Redes neurais no trading: Dupla clusterização de séries temporais (DUET)

Redes neurais no trading: Dupla clusterização de séries temporais (DUET)

O framework DUET propõe uma abordagem inovadora para a análise de séries temporais, combinando clusterização temporal e de canais para identificar padrões ocultos nos dados analisados. Isso permite adaptar os modelos às mudanças ao longo do tempo e aumentar a precisão das previsões por meio da eliminação de ruídos.
preview
Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado

Exemplo de Análise de Rede de Causalidade (CNA) e Modelo de Autorregressão Vetorial para Predição de Eventos de Mercado

Este artigo apresenta um guia abrangente para implementar um sistema de negociação sofisticado utilizando Análise de Rede de Causalidade (CNA) e Autorregressão Vetorial (VAR) em MQL5. Ele aborda o embasamento teórico desses métodos, fornece explicações detalhadas das funções-chave no algoritmo de negociação e inclui exemplos de código para implementação.
preview
Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Redes neurais em trading: Modelo universal de geração de trajetórias (UniTraj)

Compreender o comportamento de agentes é importante em diversas áreas, mas a maioria dos métodos se concentra em uma única tarefa (compreensão, remoção de ruído ou previsão), o que reduz sua eficácia em cenários reais. Neste artigo, apresento um modelo capaz de se adaptar à solução de diferentes tarefas.
preview
Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)

Redes neurais em trading: Detecção de objetos com reconhecimento de cena (HyperDet3D)

Apresentamos uma nova abordagem para a detecção de objetos por meio de hiper-redes. Uma hiper-rede de geração de pesos para o modelo subjacente, que nos permite levar em conta as peculiaridades do estado atual do mercado. Essa abordagem melhora a precisão da previsão, adaptando o modelo a diferentes condições de mercado.
preview
Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)

Redes neurais em trading: Sistema multiagente com confirmação conceitual (Conclusão)

Continuamos a implementação das abordagens propostas pelos autores do framework FinCon. O FinCon é um sistema multiagente baseado em grandes modelos de linguagem (LLM). Hoje vamos implementar os módulos necessários e realizar testes abrangentes do modelo com dados históricos reais.
preview
Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa

Redes neurais em trading: Modelos com uso de transformação wavelet e atenção multitarefa

Apresentamos um framework que combina a transformação wavelet com um modelo multitarefa de Self-Attention, visando aumentar a responsividade e a precisão das previsões em cenários de mercado voláteis. A transformação wavelet permite decompor o retorno dos ativos em frequências altas e baixas, capturando com precisão as tendências de longo prazo do mercado e as flutuações de curto prazo.
preview
Visualização de estratégias em MQL5: distribuindo os resultados da otimização em gráficos de critérios

Visualização de estratégias em MQL5: distribuindo os resultados da otimização em gráficos de critérios

Neste artigo, escreveremos um exemplo de visualização do processo de otimização e exibiremos os três melhores passes para quatro critérios de otimização. Além disso, implementaremos a possibilidade de selecionar um dos três melhores passes para exibir seus dados em tabelas e no gráfico.
preview
Criação de um painel de administração de trading no MQL5 (Parte IV): Segurança no login

Criação de um painel de administração de trading no MQL5 (Parte IV): Segurança no login

Imagine que um invasor tenha conseguido entrar no sistema de gerenciamento de trading e obtido acesso aos computadores e ao painel de administração usados para transmitir informações valiosas a milhões de traders em todo o mundo. Isso pode resultar em consequências catastróficas, como o envio não autorizado de mensagens enganosas ou cliques acidentais em botões que disparam ações indesejadas. Neste artigo, analisaremos as medidas de segurança do MQL5 e os novos recursos de proteção implementados em nosso painel de administração para evitar tais ameaças. Ao aprimorar nossos protocolos de segurança, buscamos proteger nossos canais de comunicação e manter a confiança dos membros de nossa comunidade de trading.
preview
Redes neurais em trading: Modelos de difusão direcionada (DDM)

Redes neurais em trading: Modelos de difusão direcionada (DDM)

Apresentamos os modelos de difusão direcionada, que utilizam ruídos anisotrópicos e direcionais, dependentes dos dados, no processo de propagação para frente, para capturar representações de grafos significativas.
preview
Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Redes neurais em trading: Transformador hierárquico com duas torres (Conclusão)

Continuamos a desenvolver o modelo transformador hierárquico com duas torres, o Hidformer, projetado para análise e previsão de séries temporais multivariadas complexas. Neste artigo, levaremos o trabalho iniciado anteriormente até sua conclusão lógica, com testes do modelo em dados históricos reais.
preview
Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)

Redes neurais em trading: Agente multimodal complementado com ferramentas (Conclusão)

Damos continuidade à implementação dos algoritmos do agente multimodal para negociação financeira, o FinAgent, desenvolvido para análise de dados multimodais da dinâmica de mercado e de padrões históricos de trading.
preview
Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini

Redes neurais em trading: Redução de consumo de memória com o método de otimização Adam-mini

Uma das abordagens para aumentar a eficiência no treinamento e na convergência de modelos é aprimorar os métodos de otimização. O Adam-mini é um método adaptativo projetado para aprimorar o algoritmo base Adam.
preview
Redes neurais em trading: Segmentação guiada

Redes neurais em trading: Segmentação guiada

Vamos conhecer um método de análise multimodal integrada para interagir e compreender características.
preview
Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

Redes neurais em trading: Identificação de anomalias no domínio da frequência (CATCH)

O framework CATCH combina a transformada de Fourier e o patching de frequência para a identificação precisa de anomalias de mercado, inacessíveis aos métodos tradicionais. Neste trabalho, examinaremos como essa abordagem revela padrões ocultos nos dados financeiros.
preview
Redes neurais em trading: Modelos de espaço de estados

Redes neurais em trading: Modelos de espaço de estados

A base de muitos dos modelos que examinamos anteriormente é a arquitetura Transformer. No entanto, eles podem ser ineficientes ao lidar com sequências longas. Neste artigo, proponho uma abordagem alternativa de previsão de séries temporais com base em modelos de espaço de estados.
preview
Construa EAs auto-otimizáveis em MQL5 (Parte 3): Acompanhamento dinâmico de tendência e retorno à média

Construa EAs auto-otimizáveis em MQL5 (Parte 3): Acompanhamento dinâmico de tendência e retorno à média

Os mercados financeiros geralmente são classificados como estando em consolidação (movimento lateral) ou em tendência. Essa visão estática do mercado pode facilitar o trading no curto prazo. No entanto, ela está desconectada da realidade do mercado. Neste artigo, vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e vamos tentar compreender melhor como exatamente os mercados financeiros transitam entre esses dois possíveis regimes e como podemos utilizar esse novo entendimento do comportamento do mercado para ganhar confiança em nossas estratégias de trading algorítmico.
preview
Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Redes neurais em trading: Detecção de anomalias no domínio da frequência (Conclusão)

Damos continuidade ao trabalho de implementação das abordagens do framework CATCH, que combina a transformada de Fourier e o mecanismo de patching em frequência, possibilitando a detecção precisa de anomalias de mercado. Nesta etapa, concluímos a realização da nossa própria versão das abordagens propostas e conduziremos testes com os novos modelos utilizando dados históricos reais.
preview
Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Redes neurais em trading: Transformador hierárquico de duas torres (Hidformer)

Apresentamos o framework do transformador hierárquico de duas torres (Hidformer), desenvolvido para previsão de séries temporais e análise de dados. Os autores do framework propuseram diversas melhorias na arquitetura Transformer, o que permitiu aumentar a precisão das previsões e reduzir o consumo de recursos computacionais.
preview
Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)

Redes neurais em trading: Integração da teoria do caos na previsão de séries temporais (Attraos)

O Attraos é um framework que integra a teoria do caos à previsão de séries temporais de longo prazo, tratando-as como projeções de sistemas dinâmicos caóticos multidimensionais. Por meio da invariância do atrator, o modelo aplica a reconstrução do espaço de fases e a memória dinâmica com múltiplas resoluções para preservar estruturas históricas.
preview
Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Trading por pares: negociação algorítmica com auto-otimização baseada na diferença de pontuação Z

Neste artigo, analisaremos o que é o trading por pares e como ocorre a negociação baseada em correlações. Também criaremos um EA para automatizar o trading por pares e adicionaremos a possibilidade de otimização automática desse algoritmo de negociação com base em dados históricos. Além disso, dentro do projeto, aprenderemos a calcular as divergências entre dois pares por meio da pontuação Z.
preview
Redes neurais em trading: Segmentação de dados com base em expressões de referência

Redes neurais em trading: Segmentação de dados com base em expressões de referência

Ao analisarmos a situação de mercado, a dividimos em segmentos individuais, identificando as principais tendências. No entanto, os métodos tradicionais de análise geralmente se concentram em um único aspecto, limitando a percepção. Neste artigo, apresentaremos um método que permite destacar vários objetos, oferecendo uma compreensão mais completa e em camadas da situação.
preview
Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 5): Volatility Navigator EA

Desenvolvimento do Kit de Ferramentas de Análise de Price Action (Parte 5): Volatility Navigator EA

Determinar a direção do mercado pode ser simples, mas saber quando entrar pode ser desafiador. Como parte da série intitulada "Desenvolvimento do Kit de Ferramentas de Análise de Price Action", tenho o prazer de apresentar mais uma ferramenta que fornece pontos de entrada, níveis de take profit e definições de stop loss. Para isso, utilizamos a linguagem de programação MQL5. Vamos nos aprofundar em cada etapa neste artigo.
preview
Introdução ao MQL5 (Parte 11): Um guia para iniciantes sobre como trabalhar com indicadores incorporados no MQL5 (II)

Introdução ao MQL5 (Parte 11): Um guia para iniciantes sobre como trabalhar com indicadores incorporados no MQL5 (II)

Descubra como desenvolver um Expert Advisor (EA) em MQL5 usando múltiplos indicadores como RSI, MA e Oscilador Estocástico para detectar divergências ocultas de alta e de baixa. Aprenda a implementar um gerenciamento de risco eficaz e a automatizar negociações com exemplos detalhados e código-fonte totalmente comentado para fins educacionais!
preview
Negociamos opções sem opções (Parte 1): Fundamentos da teoria e emulação por meio de ativos subjacentes

Negociamos opções sem opções (Parte 1): Fundamentos da teoria e emulação por meio de ativos subjacentes

O artigo descreve uma variante de emulação de opções por meio do ativo subjacente, implementada na linguagem de programação MQL5. São comparadas as vantagens e desvantagens da abordagem escolhida em relação às opções reais negociadas em bolsa, usando como exemplo o mercado futuro FORTS da bolsa de Moscou MOEX e a corretora de criptomoedas Bybit.
preview
Automatizando Estratégias de Trading em MQL5 (Parte 5): Desenvolvendo a Estratégia Adaptive Crossover RSI Trading Suite

Automatizando Estratégias de Trading em MQL5 (Parte 5): Desenvolvendo a Estratégia Adaptive Crossover RSI Trading Suite

Neste artigo, desenvolvemos o Sistema Adaptive Crossover RSI Trading Suite, que utiliza cruzamentos de médias móveis de 14 e 50 períodos para geração de sinais, confirmados por um filtro de RSI de 14 períodos. O sistema inclui um filtro de dias de negociação, setas de sinal com anotações e um painel em tempo real para monitoramento. Essa abordagem garante precisão e adaptabilidade no trading automatizado.