
Redes neurais de maneira fácil (Parte 40): Abordagens para usar Go-Explore em uma grande quantidade de dados
Neste artigo, discutiremos a aplicação do algoritmo Go-Explore ao longo de um período de treinamento prolongado, uma vez que uma estratégia de seleção aleatória de ações pode não levar a uma passagem lucrativa à medida que o tempo de treinamento aumenta.

Redes neurais de maneira fácil (Parte 80): modelo generativo adversarial do transformador de grafos (GTGAN)
Neste artigo, apresento o algoritmo GTGAN, que foi introduzido em janeiro de 2024 para resolver tarefas complexas de criação de layout arquitetônico com restrições de grafos.

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência
Neste artigo, exploraremos as capacidades da poderosa linguagem MQL5 na criação de vários estilos de indicadores no MetaTrader 5. Também analisaremos os scripts e como eles podem ser utilizados em nosso modelo.

Redes neurais de maneira fácil (Parte 66): Problemáticas da pesquisa em treinamento off-line
O treinamento de modelos em modo off-line é realizado com dados de uma amostra de treinamento previamente preparada. Isso nos oferece várias vantagens, mas também comprime significativamente as informações sobre o ambiente em relação às dimensões da amostra de treinamento. Isso, por sua vez, limita as possibilidades de pesquisa. Neste artigo, quero apresentar um método que permite enriquecer a amostra de treinamento com dados o mais diversificados possível.

Redes neurais de maneira fácil (Parte 63): pré-treinamento do transformador de decisões não supervisionado (PDT)
Continuamos nossa análise, desta vez, explorando a família de transformadores de decisão. Em trabalhos anteriores, já observamos que o treinamento do transformador subjacente à arquitetura desses métodos é bastante desafiador e requer uma grande quantidade de dados de treinamento rotulados. Neste artigo, consideramos um algoritmo para usar trajetórias não rotuladas com o objetivo de pré-treinar modelos.

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt
O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.

Redes neurais de maneira fácil (Parte 97): Treinamento do modelo usando o MSFformer
Ao estudar diferentes arquiteturas de construção de modelos, temos dado pouca atenção ao processo de treinamento dos modelos. Neste artigo, tentarei preencher essa lacuna.

Redes neurais de maneira fácil (Parte 68): Otimização off-line de políticas baseada em preferências
Desde os primeiros artigos sobre aprendizado por reforço, a gente sempre falou de duas coisas: como explorar o ambiente e definir a função de recompensa. Os artigos mais recentes foram dedicados à exploração durante o aprendizado off-line. Neste aqui, quero apresentar a você um algoritmo em que os autores resolveram deixar de lado a função de recompensa.

Negociação de Notícias Facilitada (Parte 3): Realizando Negócios
Neste artigo, nosso especialista em negociação de notícias começará a abrir negociações com base no calendário econômico armazenado em nosso banco de dados. Além disso, melhoraremos os gráficos do especialista para exibir informações mais relevantes sobre os próximos eventos do calendário econômico.

Reimaginando Estratégias Clássicas (Parte V): Análise de Múltiplos Símbolos no USDZAR
Nesta série de artigos, revisitamos estratégias clássicas para verificar se podemos melhorá-las usando IA. No artigo de hoje, examinaremos uma estratégia popular de análise de múltiplos símbolos utilizando uma cesta de ativos correlacionados. Focaremos no par de moedas exótico USDZAR.

Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos
Neste artigo, integramos botões inline interativos em um Expert Advisor MQL5, permitindo controle em tempo real via Telegram. Cada clique em um botão dispara ações específicas e envia respostas de volta ao usuário. Também modularizamos funções para lidar com mensagens do Telegram e consultas de callback de forma eficiente.

Otimização de portfólio em Forex: Síntese de VaR e teoria de Markowitz
Como se realiza o trading com portfólio em Forex? Como pode ser feita a síntese entre a teoria de portfólio de Markowitz para otimizar as proporções do portfólio e o modelo VaR para otimizar o risco do portfólio? Vamos criar um código baseado na teoria de portfólio, onde, de um lado, obtemos um risco reduzido e, do outro, uma rentabilidade de longo prazo aceitável.

Redes neurais em trading: Conjunto de agentes com uso de mecanismos de atenção (MASAAT)
Apresentamos a estrutura adaptativa multiagente para otimização de portfólio financeiro (MASAAT), que integra mecanismos de atenção e análise de séries temporais. O MASAAT forma um conjunto de agentes que analisam séries de preços e mudanças direcionais, permitindo identificar variações significativas nos preços dos ativos em diferentes níveis de detalhamento.

Redes neurais de maneira fácil (Parte 75): aumentando a produtividade dos modelos de previsão de trajetórias
Os modelos que estamos criando estão se tornando cada vez maiores e mais complexos. Com isso, aumentam os custos não apenas para o treinamento, mas também para a operação. Além disso, muitas vezes nos deparamos com situações em que o tempo de tomada de decisão é crítico. E, por isso, voltamos nossa atenção para métodos de otimização de desempenho dos modelos sem perder qualidade.

Redes neurais em trading: Transformer com codificação relativa
O aprendizado autossupervisionado pode ser uma forma eficaz de analisar grandes volumes de dados brutos não rotulados. O principal fator de sucesso é a adaptação dos modelos às particularidades dos mercados financeiros, o que melhora o desempenho dos métodos tradicionais. Este artigo apresentará um mecanismo alternativo de atenção, que permite levar em conta dependências relativas e inter-relações entre os dados brutos.

Teoria das Categorias em MQL5 (Parte 7): Domínios Multiconjuntos, Relativos e Indexados.
A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.

Reimaginando Estratégias Clássicas (Parte II): Rompimentos das Bandas de Bollinger
Este artigo explora uma estratégia de trading que integra a Análise Discriminante Linear (LDA) com Bandas de Bollinger, aproveitando previsões de zonas categóricas para gerar sinais estratégicos de entrada no mercado.

Redes neurais em trading: Transformer parâmetro-eficiente com atenção segmentada (PSformer)
Apresentamos o novo framework PSformer, que adapta a arquitetura do Transformer puro para resolver tarefas de previsão de séries temporais multivariadas. O framework é baseado em duas inovações principais: o mecanismo de compartilhamento de parâmetros (PS) e a atenção aos segmentos espaço-temporais (SegAtt).

Redes neurais de maneira fácil (Parte 81): Análise da dinâmica dos dados considerando o contexto (CCMR)
Em trabalhos anteriores, sempre avaliamos o estado atual do ambiente. No entanto, a dinâmica das mudanças dos indicadores sempre ficou "nos bastidores". Neste artigo, quero apresentar a vocês um algoritmo que permite avaliar a mudança direta dos dados entre dois estados consecutivos do ambiente.

Filtragem e extração de características no domínio da frequência
Neste artigo, vamos explorar a aplicação de filtros digitais em séries temporais representadas no domínio da frequência, com o objetivo de extrair características únicas que podem ser úteis para modelos de previsão.

Redes neurais de maneira fácil (Parte 90): Interpolação Frequencial de Séries Temporais (FITS)
Ao estudarmos o método FEDformer, abrimos uma porta para a área de representação de séries temporais no domínio da frequência. No novo artigo, continuaremos o tema iniciado, e analisaremos um método que permite não apenas conduzir uma análise, mas também prever estados futuros no domínio frequencial.

Redes neurais em trading: Aprendizado hierárquico de características em nuvens de pontos
Continuamos estudando algoritmos para extração de características de nuvens de pontos. Neste artigo, exploraremos mecanismos para aumentar a eficiência do método PointNet.

Análise de Sentimento no Twitter com Sockets
Este inovador bot de negociação integra o MetaTrader 5 com Python para aproveitar a análise de sentimento em tempo real nas mídias sociais para decisões automatizadas de negociação. Ao analisar o sentimento no Twitter relacionado a instrumentos financeiros específicos, o bot traduz as tendências das mídias sociais em sinais acionáveis de negociação. Ele utiliza uma arquitetura cliente-servidor com comunicação via socket, permitindo uma interação contínua entre as capacidades de negociação do MT5 e o poder de processamento de dados do Python.

Redes neurais de maneira fácil (Parte 77): Cross-Covariance Transformer (XCiT)
Em nossos modelos, frequentemente usamos vários algoritmos de atenção. E, provavelmente, usamos Transformadores com mais frequência. A principal desvantagem deles é a exigência de recursos. Neste artigo, quero apresentar um algoritmo que ajuda a reduzir os custos computacionais sem perda de qualidade.

Reimaginando Estratégias Clássicas (Parte IV): SP500 e Notas do Tesouro dos EUA
Nesta série de artigos, analisamos estratégias clássicas de negociação usando algoritmos modernos para determinar se podemos melhorar a estratégia utilizando IA. No artigo de hoje, revisamos uma abordagem clássica para negociar o SP500 usando a relação que ele tem com as Notas do Tesouro dos EUA.

Redes neurais de maneira fácil (Parte 94): Otimização da sequência de dados iniciais
Ao trabalhar com séries temporais, geralmente usamos os dados na sequência histórica. Mas isso é realmente o mais eficiente? Há quem acredite que modificar a sequência dos dados iniciais pode aumentar a eficácia dos modelos de aprendizado. Neste artigo, vou apresentar um desses métodos.

Construindo Expert Advisors Auto-otimizantes Com MQL5 E Python (Parte II): Ajustando Redes Neurais Profundas
Modelos de aprendizado de máquina vêm com vários parâmetros ajustáveis. Nesta série de artigos, exploraremos como personalizar seus modelos de IA para se ajustar ao seu mercado específico utilizando a biblioteca SciPy.

Redes neurais em trading: Transformer eficiente em parâmetros com atenção segmentada (Conclusão)
No artigo anterior, abordamos os aspectos teóricos do framework PSformer, que incorpora duas inovações principais na arquitetura clássica do Transformer: o mecanismo de compartilhamento de parâmetros (Parameter Shared — PS) e a atenção a segmentos espaço-temporais (SegAtt). Neste artigo, damos continuidade à implementação dessas abordagens usando os recursos do MQL5.

Redes neurais em trading: Explorando a estrutura local dos dados
A identificação eficaz e a preservação da estrutura local dos dados de mercado em meio ao ruído são tarefas cruciais no trading. Embora o uso do mecanismo Self-Attention tenha mostrado bons resultados no processamento desses dados, o método clássico não leva em conta as características locais da estrutura original. Neste artigo, proponho conhecer um algoritmo capaz de considerar essas dependências estruturais.

Avaliação visual e ajuste da negociação no MetaTrader 5
No testador de estratégias, é possível não apenas otimizar os parâmetros do robô de negociação. Vamos mostrar como avaliar, após o fato, o histórico de negociação de sua conta e fazer ajustes na negociação dentro do testador, alterando os tamanhos dos stop orders das posições abertas.

Redes neurais de maneira fácil (Parte 78): Detecção de objetos baseada em Transformador (DFFT)
Neste artigo, proponho olhar a questão da construção de uma estratégia de trading de outra perspectiva. Em vez de prever o movimento futuro dos preços, tentaremos construir um sistema de trading baseado na análise de dados históricos.

Implementando uma Estratégia de Trading Rápido com Parabolic SAR e Média Móvel Simples (SMA) em MQL5
Neste artigo, desenvolvemos um Expert Advisor de Trading Rápido em MQL5, aproveitando os indicadores Parabolic SAR e Média Móvel Simples (SMA) para criar uma estratégia de trading responsiva. Detalhamos a implementação da estratégia, incluindo o uso de indicadores, geração de sinais e o processo de testes e otimização.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 4): Modularizando Funções de Código para Maior Reutilização
Neste artigo, reformulamos o código existente usado para enviar mensagens e capturas de tela do MQL5 para o Telegram, organizando-o em funções modulares reutilizáveis. Isso tornará o processo mais eficiente, permitindo uma execução mais rápida e uma gestão de código mais fácil em múltiplas instâncias.

Redes neurais em trading: Otimizando Transformer para previsão de séries temporais (LSEAttention)
O framework LSEAttention propõe caminhos para aprimorar a arquitetura Transformer, tendo sido desenvolvido especificamente para a previsão de séries temporais multivariadas de longo prazo. As abordagens sugeridas pelos autores do método permitem resolver problemas comuns no Transformer tradicional, como o colapso entrópico e a instabilidade no treinamento.

Reimaginando estratégias clássicas (Parte III): Prevendo máximas mais altas e mínimas mais baixas
Neste artigo, analisamos empiricamente estratégias de trading clássicas para verificar se é possível aprimorá-las com inteligência artificial (IA). Utilizaremos o modelo de Análise Discriminante Linear (Linear Discriminant Analysis) para tentar prever máximas mais altas e mínimas mais baixas.

Redes neurais em trading: Modelo adaptativo multiagente (Conclusão)
No artigo anterior, conhecemos o framework adaptativo multiagente MASA, que combina abordagens de aprendizado por reforço com estratégias adaptativas, garantindo um equilíbrio harmônico entre lucratividade e riscos em condições turbulentas de mercado. Implementamos o funcional de agentes individuais deste framework, e neste artigo continuaremos o trabalho iniciado, levando-o à sua conclusão lógica.

Analisando exemplos de estratégias de trading no terminal do cliente
O artigo examina, com base em diagramas de blocos, a lógica dos Expert Advisors (EAs) educacionais incluídos no terminal, localizados na pasta Experts > Free Robots, que operam com padrões de velas.

Implementação do Exponente de Hurst Generalizado e do Teste de Razão de Variância em MQL5
Neste artigo, investigamos como o Exponente de Hurst Generalizado e o Teste de Razão de Variância podem ser utilizados para analisar o comportamento das séries de preços em MQL5.

Redes neurais em trading: Análise de nuvem de pontos (PointNet)
A análise direta da nuvem de pontos permite evitar um aumento excessivo no volume de dados e aprimorar a eficiência dos modelos em tarefas de classificação e segmentação. Abordagens deste tipo demonstram um bom desempenho e resistência a perturbações nos dados brutos.

Exemplo de novo Indicador e LSTM Condicional
Este artigo explora o desenvolvimento de um Expert Advisor (EA) para trading automatizado que combina análise técnica com previsões de deep learning.