Artigos com exemplos de como programar robôs de negociação na linguagem MQL5

icon

Os experts são o coração da negociação automatizada e o objetivo de toda pessoa que programa estratégias de trading. Você pode criar seu próprio robô de negociação com a ajuda dos artigos desta seção. Os principiantes podem seguir passo a passo todas as etapas dos sistemas de negociação automatizados: criação, depuração e teste.

Os artigos ensinam não apenas como programar em MQL5, mas também mostram como implementar quaisquer ideias e técnicas de negociação. Aprenda a programar um trailing stop, a aplicar o gerenciamento de dinheiro, a calcular o valor de um indicador e muito, muito mais.

Novo artigo
recentes | melhores
preview
Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)

Neste artigo, continuamos a implementação das abordagens do ATFNet — um modelo que adapta e combina os resultados de 2 blocos (frequencial e temporal) de previsão de séries temporais.
preview
Redes neurais em trading: Modelos "leves" para previsão de séries temporais

Redes neurais em trading: Modelos "leves" para previsão de séries temporais

Os modelos leves para previsão de séries temporais oferecem alto desempenho utilizando uma quantidade mínima de parâmetros. Isso reduz o consumo de recursos computacionais e acelera a tomada de decisões. Ao mesmo tempo, eles alcançam qualidade de previsão comparável à de modelos mais complexos.
preview
Introdução ao MQL5 (Parte 5): Um Guia para Iniciantes sobre Funções de Array em MQL5

Introdução ao MQL5 (Parte 5): Um Guia para Iniciantes sobre Funções de Array em MQL5

Explore o mundo dos arrays em MQL5 na Parte 5, projetado para iniciantes absolutos. Simplificando conceitos complexos de codificação, este artigo foca na clareza e inclusão. Junte-se à nossa comunidade de aprendizes, onde perguntas são bem-vindas e conhecimento é compartilhado!
preview
Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica

Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica

No artigo anterior, apresentamos o método DIAYN, que oferece um algoritmo para aprender uma variedade de habilidades. O uso das habilidades adquiridas pode ser usado para diversas tarefas. Mas essas habilidades podem ser bastante imprevisíveis, o que pode dificultar seu uso. Neste artigo, veremos um algoritmo para ensinar habilidades previsíveis.
preview
Redes neurais em trading: Aumentando a eficiência do Transformer por meio da redução da nitidez (SAMformer)

Redes neurais em trading: Aumentando a eficiência do Transformer por meio da redução da nitidez (SAMformer)

O treinamento de modelos Transformer exige grandes volumes de dados e muitas vezes é dificultado pela fraca capacidade dos modelos de generalizar em amostras pequenas. O framework SAMformer ajuda a resolver esse problema ao evitar mínimos locais ruins. E aumenta a eficiência dos modelos mesmo em conjuntos de treinamento limitados.
preview
Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado

No último artigo, elaboramos uma ferramenta para criar e editar a arquitetura de redes neurais. E hoje quero convidá-lo a continuar trabalhando nela, para torná-la mais amigável. De certa forma, ao fazer isso, estamos nos afastando um pouco do nosso tópico. Mas convenhamos que a organização do espaço de trabalho desempenha um papel importante na obtenção do resultado.
preview
Redes neurais e m trading: Aumento da eficiência do Transformer por meio da redução da nitidez (Conclusão)

Redes neurais e m trading: Aumento da eficiência do Transformer por meio da redução da nitidez (Conclusão)

O SAMformer propõe uma solução para os principais problemas do Transformer na previsão de séries temporais de longo prazo, incluindo a complexidade do treinamento e a fraca capacidade de generalização em amostras pequenas. Sua arquitetura rasa e a otimização com consideração da nitidez garantem o desvio de mínimos locais ruins. Neste artigo, continuaremos a implementação das abordagens utilizando MQL5 e avaliaremos seu valor prático.
preview
Paradigmas de programação (Parte 1): Abordagem procedural para desenvolvimento de Expert Advisors com base na dinâmica de preços

Paradigmas de programação (Parte 1): Abordagem procedural para desenvolvimento de Expert Advisors com base na dinâmica de preços

Aprenda sobre paradigmas de programação e suas aplicações no código MQL5. Neste artigo, exploramos as características da programação procedural, além de oferecer exemplos práticos. Você aprenderá como desenvolver um Expert Advisor baseado na dinâmica de preços (Price Action), utilizando o indicador EMA e dados de velas. Além disso, o artigo apresenta o paradigma da programação funcional.
preview
Introdução ao MQL5 (Parte 6): Um Guia para Iniciantes sobre Funções de Array em MQL5

Introdução ao MQL5 (Parte 6): Um Guia para Iniciantes sobre Funções de Array em MQL5

Embarque na próxima fase da nossa jornada com MQL5. Neste artigo esclarecedor e amigável para iniciantes, exploraremos as funções restantes de arrays, desmistificando conceitos complexos para capacitá-lo a criar estratégias de negociação eficientes. Discutiremos as funções ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrayRemove, ArraySwap, ArrayReverse e ArraySort. Eleve sua expertise em negociação algorítmica com essas funções essenciais de arrays. Junte-se a nós no caminho para a maestria em MQL5!
preview
Teoria das Categorias em MQL5 (Parte 11): Grafos

Teoria das Categorias em MQL5 (Parte 11): Grafos

Esse artigo é uma continuação da série sobre como implementar a teoria das categorias no MQL5. Aqui consideramos como a teoria dos grafos pode ser integrada com monoides e outras estruturas de dados ao desenvolver uma estratégia para fechar um sistema de negociação.
preview
Criando um algoritmo de market making no MQL5

Criando um algoritmo de market making no MQL5

Como funcionam os market makers no mercado? Vamos explorar isso e criar um algoritmo simples de market making.
preview
Criação de um EA em MQL5 com base na estratégia PIRANHA utilizando Bandas de Bollinger

Criação de um EA em MQL5 com base na estratégia PIRANHA utilizando Bandas de Bollinger

Neste artigo, criamos um EA (Expert Advisor) em MQL5 com base na estratégia PIRANHA, utilizando as Bandas de Bollinger para aumentar a eficiência da negociação. Discutimos os princípios-chave da estratégia, a implementação do código, bem como os métodos de teste e otimização. Esse conhecimento permitirá usar o EA com eficácia em seus cenários de trading.
preview
Criando um Painel de Administração de Trading em MQL5 (Parte VIII): Painel de Análises

Criando um Painel de Administração de Trading em MQL5 (Parte VIII): Painel de Análises

Hoje, aprofundamos a incorporação de métricas de trading úteis dentro de uma janela especializada integrada ao EA do Painel de Administração. Esta discussão foca na implementação em MQL5 para desenvolver um Painel de Análises e destaca o valor dos dados que ele fornece aos administradores de trading. O impacto é amplamente educacional, pois lições valiosas são extraídas do processo de desenvolvimento, beneficiando tanto desenvolvedores iniciantes quanto experientes. Este recurso demonstra as oportunidades ilimitadas que esta série de desenvolvimento oferece ao equipar gestores de operações com ferramentas avançadas de software. Além disso, exploraremos a implementação das classes PieChart e ChartCanvas como parte da expansão contínua das capacidades do painel de Administração de Trading.
preview
Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Redes neurais em trading: Modelos bidimensionais do espaço de conexões (Chimera)

Descubra o inovador framework Chimera, um modelo bidimensional do espaço de estados que utiliza redes neurais para analisar séries temporais multidimensionais. Esse método oferece alta precisão com baixo custo computacional, superando abordagens tradicionais e arquiteturas do tipo Transformer.
preview
Redes neurais de maneira fácil (Parte 54): usando o codificador aleatório para exploração eficiente (RE3)

Redes neurais de maneira fácil (Parte 54): usando o codificador aleatório para exploração eficiente (RE3)

A cada vez que consideramos métodos de aprendizado por reforço, nos deparamos com a questão da exploração eficiente do ambiente. A solução deste problema frequentemente leva à complexificação do algoritmo e ao treinamento de modelos adicionais. Neste artigo, vamos considerar uma abordagem alternativa para resolver esse problema.
preview
Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Desenvolvendo um EA multimoeda (Parte 5): tamanho de posição variável

Nos capítulos anteriores, o EA desenvolvido só podia usar um tamanho de posição fixo para negociações. Isso é adequado para testes, mas não é aconselhável ao negociar mediante uma conta real. Vamos adicionar a capacidade de operar com tamanhos de posição variáveis.
preview
Desenvolvendo um EA multimoeda (Parte 2): Transição para posições virtuais de estratégias de trading

Desenvolvendo um EA multimoeda (Parte 2): Transição para posições virtuais de estratégias de trading

Vamos continuar a desenvolver o EA multimoeda com várias estratégias funcionando paralelamente. Tentaremos transferir todo o trabalho relacionado à abertura de posições a mercado do nível das estratégias para o nível do expert que gerencia as estratégias. As próprias estratégias irão negociar apenas virtualmente, sem abrir posições a mercado.
preview
Experimentos com redes neurais (Parte 7): Transferência de indicadores

Experimentos com redes neurais (Parte 7): Transferência de indicadores

Desta vez, veremos exemplos de passagem de indicadores ao perceptron. Abordaremos conceitos gerais, um Expert Advisor simples pronto, os resultados de sua otimização e testes forward.
preview
Redes neurais em trading:  Modelos híbridos de sequências de grafos (Conclusão)

Redes neurais em trading: Modelos híbridos de sequências de grafos (Conclusão)

Seguimos o estudo de modelos híbridos de sequências de grafos (GSM++), que integram as vantagens de diferentes arquiteturas e garantem alta precisão na análise, além de uso eficiente dos recursos computacionais. Esses modelos identificam, de maneira eficaz, padrões ocultos, reduzindo o impacto do ruído de mercado e elevando a qualidade das previsões.
preview
Desenvolvendo um EA multimoeda (Parte 3): Revisão da arquitetura

Desenvolvendo um EA multimoeda (Parte 3): Revisão da arquitetura

Nós já avançamos um pouco no desenvolvimento de um EA multimoeda com várias estratégias funcionando em paralelo. Com base na experiência acumulada, vamos revisar a arquitetura da nossa solução e tentar melhorá-la, antes que avancemos muito.
preview
Redes neurais de maneira fácil (Parte 65): aprendizado supervisionado ponderado por distância (DWSL)

Redes neurais de maneira fácil (Parte 65): aprendizado supervisionado ponderado por distância (DWSL)

Neste artigo, convido você a conhecer um algoritmo interessante que se situa na interseção entre os métodos de aprendizado supervisionado e de reforço.
preview
Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência

Construindo um Modelo de Restrição de Tendência de Candlestick (Parte 4): Personalizando o Estilo de Exibição para Cada Onda de Tendência

Neste artigo, exploraremos as capacidades da poderosa linguagem MQL5 na criação de vários estilos de indicadores no MetaTrader 5. Também analisaremos os scripts e como eles podem ser utilizados em nosso modelo.
preview
Redes neurais em trading: Representação linear por partes de séries temporais

Redes neurais em trading: Representação linear por partes de séries temporais

Este artigo é um pouco diferente dos trabalhos anteriores desta série. Nele, discutiremos uma representação alternativa de séries temporais. A representação linear por partes de séries temporais é um método de aproximação de séries temporais usando funções lineares em pequenos intervalos.
preview
Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos

Criando um Expert Advisor Integrado ao Telegram em MQL5 (Parte 6): Adicionando Botões Inline Interativos

Neste artigo, integramos botões inline interativos em um Expert Advisor MQL5, permitindo controle em tempo real via Telegram. Cada clique em um botão dispara ações específicas e envia respostas de volta ao usuário. Também modularizamos funções para lidar com mensagens do Telegram e consultas de callback de forma eficiente.
preview
Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

Reimaginando Estratégias Clássicas (Parte XI): Cruzamento de Médias Móveis (II)

As médias móveis e o oscilador estocástico podem ser usados para gerar sinais de negociação de tendência. No entanto, esses sinais só serão observados após a ação do preço ter ocorrido. Podemos superar efetivamente essa defasagem inerente dos indicadores técnicos usando IA. Este artigo ensinará como criar um Expert Advisor totalmente autônomo com IA, de forma a melhorar qualquer uma de suas estratégias de negociação existentes. Até mesmo a estratégia de negociação mais antiga possível pode ser aprimorada.
preview
Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Redes neurais de maneira fácil (Parte 64): Método de clonagem de comportamento ponderada conservadora (CWBC)

Pelo resultado dos testes realizados em artigos anteriores, concluímos que a qualidade da estratégia treinada depende muito da amostra de treinamento utilizada. Neste artigo, apresento a vocês um método simples e eficaz para selecionar trajetórias com o objetivo de treinar modelos.
preview
Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

Previsão baseada em aprendizado profundo e abertura de ordens com o pacote MetaTrader 5 python e arquivo de modelo ONNX

O projeto envolve o uso de Python para previsão em mercados financeiros baseada em aprendizado profundo. Nós exploraremos as nuances do teste de desempenho do modelo usando indicadores-chave como erro absoluto médio (MAE), erro quadrático médio (MSE) e R-quadrado (R2), além de aprender a integrar tudo isso em um arquivo executável. Também criaremos um arquivo de modelo ONNX e um EA (Expert Advisor).
preview
Redes neurais de maneira fácil (Parte 52): exploração com otimização e correção de distribuição

Redes neurais de maneira fácil (Parte 52): exploração com otimização e correção de distribuição

À medida que a política do Ator se afasta cada vez mais dos exemplos armazenados no buffer de reprodução de experiências, a eficácia do treinamento do modelo, baseado nesse buffer, diminui. Neste artigo, examinamos um algoritmo que aumenta a eficácia do uso de amostras em algoritmos de aprendizado por reforço.
preview
Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

Redes neurais de maneira fácil (Parte 60): transformador de decisões on-line (ODT)

As últimas 2 partes foram dedicadas ao método transformador de decisões (DT), que modela sequências de ações no contexto de um modelo autorregressivo de recompensas desejadas. Neste artigo, vamos considerar outro algoritmo de otimização deste método.
preview
Redes neurais de maneira fácil (Parte 39): Go-Explore - uma abordagem diferente para exploração

Redes neurais de maneira fácil (Parte 39): Go-Explore - uma abordagem diferente para exploração

Continuamos com o tema da exploração do ambiente no aprendizado por reforço. Neste artigo, abordaremos mais um algoritmo, o Go-Explore, que permite explorar eficazmente o ambiente durante a fase de treinamento do modelo.
preview
Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Redes neurais de maneira fácil (Parte 58): transformador de decisões (Decision Transformer — DT)

Continuamos a explorar os métodos de aprendizado por reforço. Neste artigo, proponho apresentar um algoritmo ligeiramente diferente que considera a política do agente sob a perspectiva de construir uma sequência de ações.
preview
Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Simplificando a negociação com base em notícias (Parte 2): Gerenciando riscos

Neste artigo, adicionaremos herança ao código anterior e ao novo. Implementaremos uma nova estrutura de banco de dados para garantir um bom desempenho. Além disso, criaremos uma classe de gerenciamento de risco para calcular volumes.
preview
Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

Redes neurais em trading: Aprendizado multitarefa baseado no modelo ResNeXt

O framework de aprendizado multitarefa baseado no ResNeXt otimiza a análise de dados financeiros ao considerar sua alta dimensionalidade, não linearidade e dependências temporais. O uso de convolução em grupo e cabeças especializadas permite que o modelo extraia de forma eficiente as principais características dos dados brutos.
preview
Filtragem de Sazonalidade e Período de Tempo para Modelos de Deep Learning ONNX com Python para EA

Filtragem de Sazonalidade e Período de Tempo para Modelos de Deep Learning ONNX com Python para EA

Podemos nos beneficiar da sazonalidade ao criar modelos de Deep Learning com Python? A filtragem de dados para os modelos ONNX ajuda a obter melhores resultados? Qual período de tempo devemos usar? Cobriremos tudo isso neste artigo.
preview
Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

Redes neurais de maneira fácil (Parte 55): Controle interno contrastivo (CIC)

O aprendizado contrastivo é um método de aprendizado de representação sem supervisão. Seu objetivo é ensinar o modelo a identificar semelhanças e diferenças nos conjuntos de dados. Neste artigo, discutiremos o uso de abordagens de aprendizado contrastivo para explorar diferentes habilidades do Ator.
preview
Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Redes neurais de maneira fácil (Parte 67): Aprendendo com experiências passadas para resolver novos problemas

Neste artigo, continuaremos a falar sobre métodos de coleta de dados em uma amostra de treinamento. É claro que o processo de aprendizado requer constante interação com o ambiente. Mas as situações podem variar.
preview
Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

Redes neurais de maneira fácil (Parte 56): Utilização da norma nuclear para estimular a pesquisa

A pesquisa do ambiente em tarefas de aprendizado por reforço é um problema atual. Anteriormente, já examinamos algumas abordagens. E hoje, eu proponho que nos familiarizemos com mais um método, baseado na maximização da norma nuclear. Ele permite que os agentes destaquem estados do ambiente com alto grau de novidade e diversidade.
preview
Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

Data Science e Machine Learning (Parte 22): Aproveitando Redes Neurais Autoencoders para Operações Mais Inteligentes, Movendo-se do Ruído para o Sinal

No mundo acelerado dos mercados financeiros, separar sinais significativos do ruído é crucial para o sucesso nas operações de trading. Ao empregar arquiteturas sofisticadas de redes neurais, os autoencoders se destacam ao descobrir padrões ocultos dentro dos dados de mercado, transformando entradas ruidosas em insights acionáveis. Neste artigo, exploramos como os autoencoders estão revolucionando as práticas de trading, oferecendo aos traders uma ferramenta poderosa para melhorar a tomada de decisões e ganhar uma vantagem competitiva nos mercados dinâmicos de hoje.
preview
Experiência no desenvolvimento de estratégias de negociação

Experiência no desenvolvimento de estratégias de negociação

Neste artigo, proponho tentarmos desenvolver nossa própria estratégia de negociação. Uma estratégia de negociação deve ser construída com base em uma determinada vantagem estatística. E tal vantagem deve ser duradoura.
preview
Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Redes neurais em trading: Modelo adaptativo multiagente (MASA)

Apresento o framework adaptativo multiagente MASA, que une aprendizado por reforço e estratégias adaptativas, oferecendo um equilíbrio harmonioso entre rentabilidade e controle de riscos em condições de mercado turbulentas.