
Indicadores alternativos de risco e rentabilidade em MQL5
Neste artigo, apresentaremos a implementação de vários indicadores de rentabilidade e risco, considerados alternativas ao índice de Sharpe, e exploraremos curvas de patrimônio líquido hipotéticas para analisar suas características.

Aprendendo a construindo um EA que opera de forma automática (Parte 07): Tipos de Contas (II)
Aprenda como criar um EA que opera de forma automática, isto de forma simples e o mais seguro possível. É preciso sempre ficar atento, ao que um EA automatizado, esta fazendo, e se ele sair da linha, removê-lo o mais rápido possível do gráfico, encerrando o que ele estava fazendo, a fim de evitar que as coisas fugam do controle.

Experiências com redes neurais (Parte 2): Otimização inteligente de redes neurais
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.

Criando um Expert Advisor Integrado MQL5-Telegram (Parte 5): Enviando Comandos do Telegram para o MQL5 e Recebendo Respostas em Tempo Real
Neste artigo, criamos diversas classes para facilitar a comunicação em tempo real entre o MQL5 e o Telegram. Focamos na obtenção de comandos a partir do Telegram, sua decodificação e interpretação, e no envio de respostas adequadas de volta. Ao final, garantimos que essas interações estejam efetivamente testadas e operacionais dentro do ambiente de negociação.

Redes neurais de maneira fácil (Parte 33): regressão quantílica em aprendizado Q distribuído,
Continuamos a estudar o aprendizado Q distribuído e hoje veremos essa abordagem de outro ponto de vista. Falaremos sobre a possibilidade de usar regressão quantílica para resolver o problema de previsão de movimentos de preços.

Redes neurais de maneira fácil (Parte 83): Transformador espaciotemporal de atenção contínua (Conformer)
O algoritmo Conformer, apresentado aqui, foi desenvolvido para prever o tempo, que, em termos de variabilidade e imprevisibilidade, pode ser comparado aos mercados financeiros. O Conformer é um método complexo que combina as vantagens dos modelos de atenção e das equações diferenciais ordinárias.

Relembrando a antiga estratégia de tendência: dois osciladores estocásticos, MA e Fibonacci
Estratégias de negociação tradicionais. Neste artigo, vamos explorar uma estratégia de acompanhamento de tendências. Essa abordagem é totalmente baseada em análise técnica e faz uso de vários indicadores e ferramentas para gerar sinais e identificar metas de negociação. Os elementos-chave dessa estratégia incluem um oscilador estocástico de 14 períodos, um oscilador estocástico de cinco períodos, uma média móvel de 200 períodos e uma projeção de Fibonacci (para determinar as metas de negociação).

Biblioteca de análise numérica ALGLIB em MQL5
Neste artigo, vamos brevemente revisar a biblioteca de análise numérica ALGLIB 3.19, suas aplicações e novos algoritmos que aumentam a eficácia da análise de dados financeiros.

Indicador CCI. Atualizações e novos recursos
Neste artigo, considerarei a possibilidade de atualizar o indicador CCI. Além disso, eu apresentarei uma modificação do indicador.

Integrando modelos de ML ao Testador de Estratégias (Conclusão): Implementação de um Modelo de Regressão para Previsão de Preço
Este artigo descreve a implementação de um modelo de regressão de árvores de decisão para prever preços de ativos financeiros. Foram realizadas etapas de preparação dos dados, treinamento e avaliação do modelo, com ajustes e otimizações. No entanto, é importante destacar que o modelo é apenas um estudo e não deve ser usado em negociações reais.

Modelos prontos para integrar indicadores nos Expert Advisors (Parte 3): Indicadores de tendência
Neste artigo de referência, vamos dar uma olhada nos indicadores padrão da categoria Indicadores de tendência. Criaremos modelos prontos a serem usados em Expert Advisors, modelos esses que incluirão: declaração e configuração de parâmetros, inicialização/desinicialização de indicadores e recuperação de dados/sinais a partir de buffers de indicador em EAs.

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 1): Sinais baseados no ADX em combinação com o Parabolic SAR
Neste artigo, por EA multimoeda, entendemos um Expert Advisor ou robô de negociação capaz de negociar (abrir/fechar ordens, gerenciar ordens, etc.) mais de um par de símbolos a partir de um único gráfico.

Aprendendo MQL5 do iniciante ao profissional (Parte II): Tipos de dados básicos e uso de variáveis
Continuação da série para iniciantes. Aqui veremos como criar constantes e variáveis, registrar datas, cores e outros dados úteis. Aprenderemos a criar enumerações como dias da semana ou estilos de linha (contínua, tracejada etc.). Variáveis e expressões são a base da programação. Elas estão em 99% dos programas, portanto é fundamental entendê-las. Se você é novato em programação, este é um bom ponto de partida. Se o nível de conhecimento em programação é muito básico, conforme meu artigo anterior (link no início).

Trabalhando com séries temporais na biblioteca DoEasy (Parte 56): objeto de indicador personalizado, obtenção de dados a partir de objetos-indicadores numa coleção
Neste artigo, veremos a criação de um objeto de indicador personalizado para ser usado em Expert Advisors. Vamos modificar ligeiramente as classes da biblioteca e escrever métodos para receber dados desde objetos-indicadores em Expert Advisors.

Teste e otimização de estratégias para opções binárias no MetaTrader 5
Testamos e otimizamos estratégias de opções binárias no MetaTrader 5.


Trabalhando com preços na biblioteca DoEasy (Parte 61): coleção de séries de ticks para símbolos
Visto que diferentes símbolos podem ser usados durante a operação do programa, é necessário criar uma lista própria para cada um deles. Hoje vamos combinar essas listas numa coleção de dados de ticks. Na verdade, irá tratar-se de uma lista normal baseada numa classe de array dinâmico de ponteiros para instâncias da classe CObject e seus herdeiros da Biblioteca Padrão.


Trabalhando com preços na biblioteca DoEasy (Parte 60): lista-série de dados de dados de tick do símbolo
Neste artigo, criaremos uma lista para armazenar dados de tick de um símbolo e verificaremos tal criação e respectiva recepção de dados a partir dela no EA. Essas listas de dados de tick - separadamente para cada símbolo usado - formarão uma coleção de dados de tick.

Redes neurais de maneira fácil (Parte 88): Codificador denso de séries temporais (TiDE)
O desejo de obter previsões mais precisas leva os pesquisadores a complicar os modelos de previsão. Isso, por sua vez, aumenta os custos de treinamento e manutenção do modelo. Mas será que isso sempre é justificado? Neste artigo, proponho que você conheça um algoritmo que utiliza a simplicidade e a velocidade dos modelos lineares, e demonstra resultados no nível dos melhores com uma arquitetura mais complexa.

Redes neurais de maneira fácil (Parte 17): Redução de dimensionalidade
Continuamos a estudar modelos de inteligência artificial, em particular, algoritmos de aprendizado não supervisionados. Já nos encontramos com um dos algoritmos de agrupamento. E neste artigo quero compartilhar com vocês outra maneira de resolver os problemas de redução de dimensionalidade.

Desenvolvendo um EA multimoeda (Parte 1): várias estratégias de trading trabalhando juntas
Existem várias estratégias de trading. Do ponto de vista da diversificação de riscos e do aumento da estabilidade dos resultados de trading, pode ser útil usar várias estratégias em paralelo. Mas se cada estratégia for implementada como um EA separado, gerenciar o trabalho conjunto delas em uma conta de trading se torna muito mais complicado. Para resolver esse problema, é um boa idea implementar o trabalho de diferentes estratégias de trading em um único EA.

Experimentos com redes neurais (Parte 5): Normalização de parâmetros de entrada para alimentar a rede neural
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.

Redes neurais de maneira fácil (Parte 84): normalização reversível (RevIN)
Há muito já aprendemos que o pré-processamento dos dados brutos desempenha um grande papel na estabilidade do treinamento do modelo. E, para o processamento online de dados "brutos", frequentemente usamos a camada de normalização em lote. No entanto, às vezes surge a necessidade de um procedimento inverso. Um dos possíveis métodos para resolver tais tarefas é discutido neste artigo.

Força bruta para encontrar padrões (Parte VI): otimização cíclica
Neste artigo, mostrarei a primeira parte das melhorias que me permitiram não apenas fechar todo o ciclo de automação para negociação no MetaTrader 4 e 5, mas também fazer algo muito mais interessante. A partir de agora, esta solução me permite automatizar completamente tanto o processo de criação de EAs quanto o processo de otimização, além de minimizar o esforço necessário para encontrar configurações de negociação eficazes.

Redes neurais de maneira fácil (Parte 85): previsão multidimensional de séries temporais
Neste artigo, quero apresentar a vocês um novo método abrangente de previsão de séries temporais, que combina harmoniosamente as vantagens dos modelos lineares e dos transformers.

Trabalhando com séries temporais na biblioteca DoEasy (Parte 54): classes herdeiras do indicador base abstrato
Neste artigo, analisaremos a criação de classes de objetos herdeiros do indicador base abstrato. Esses objetos nos darão acesso à capacidade de criar EAs de indicador, coletar e receber estatísticas sobre valores de dados de diferentes indicadores e preços. Também criaremos uma coleção de objetos-indicadores a partir da qual será possível acessar as propriedades e dados de cada indicador criado no programa.

Redes neurais de maneira fácil (Parte 61): O problema do otimismo no aprendizado por reforço off-line
Durante o aprendizado off-line, otimizamos a política do Agente com base nos dados da amostra de treinamento. A estratégia resultante confere ao Agente confiança em suas ações. Mas, essa confiança nem sempre é justificada, já que pode acarretar maiores riscos durante a utilização prática do modelo. Hoje vamos examinar um dos métodos para reduzir esses riscos.

Redes neurais de maneira fácil (Parte 86): Transformador em forma de U
Continuamos a analisar algoritmos de previsão de séries temporais. E neste artigo, proponho que você conheça o método U-shaped Transformer.

Preparação de indicadores com vários símbolos/períodos
Neste artigo, examinaremos os princípios para criar indicadores com vários símbolos/períodos e recuperar dados deles dentro de EAs e indicadores. Veremos as nuances mais importantes ao usar multi-indicadores em EAs e indicadores, e sua plotagem mediante buffers de indicador personalizado.

Redes neurais de maneira fácil (Parte 47): Espaço contínuo de ações
Neste artigo, estamos ampliando o escopo das tarefas do nosso agente. No processo de treinamento, incluiremos alguns aspectos de gerenciamento de dinheiro e risco, que são partes integrantes de qualquer estratégia de negociação.

Trailing-stop no trading
Neste artigo, vamos analisar o uso do trailing-stop no trading, sua utilidade e praticidade, e como pode ser utilizado. A praticidade do trailing-stop depende muito da volatilidade do preço e da escolha do nível de stop-loss. Para a configuração do stop-loss, podem ser utilizados vários métodos.

Experiências com redes neurais (Parte 3): Uso pratico
As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.

Arbitragem triangular com previsões
Este artigo simplifica a arbitragem triangular, mostrando como usar previsões e softwares especializados para negociar moedas de forma mais inteligente, mesmo se você for novo no mercado. Pronto para negociar com expertise?

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 5): Bandas de Bollinger no canal de Keltner — Sinais dos indicadores
Neste artigo, por EA multimoeda, entendemos um robô investidor, que pode negociar (abrir/fechar ordens, gerenciar ordens, por exemplo, do tipo trailing stop-loss e trailing profit) mais de um par de moedas em um gráfico. Neste artigo, utilizaremos sinais de dois indicadores, nomeadamente Bandas de Bollinger (Bollinger Bands®) e canal de Keltner.

Modelos prontos para integrar indicadores nos Expert Advisors (Parte 2): Indicadores de volume e Bill Williams
Neste artigo, examinaremos os indicadores padrão das categorias Volumes e Bill Williams. Criaremos modelos prontos a serem usados em Expert Advisors, modelos esses que incluirão: declaração e configuração de parâmetros, inicialização/desinicialização de indicadores e recuperação de dados/sinais a partir de buffers de indicador em EAs.

Redes neurais de maneira fácil (Parte 14): Agrupamento de dados
Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).

Perceptron Multicamadas e o Algoritmo Backpropagation (Parte 3): Integrando ao Testador de estratégias - Visão Geral (I)
O perceptron multicamadas é uma evolução do perceptron simples, capaz de resolver problemas não linearmente separáveis. Juntamente com o algoritmo backpropagation, é possível treinar essa rede neural de forma eficiente. Na terceira parte da série sobre perceptron multicamadas e backpropagation, vamos mostrar como integrar essa técnica ao testador de estratégias. Essa integração permitirá a utilização de análise de dados complexos e melhores decisões para otimizar as estratégias de negociação. Nesta visão geral, discutiremos as vantagens e os desafios da implementação desta técnica.

Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)
No último artigo, analisamos o algoritmo do autocodificador. Como qualquer outro algoritmo, tem suas vantagens e desvantagens. Na implementação original, o autocodificador executa a tarefa de separar os objetos da amostra de treinamento o máximo possível. E falaremos sobre como lidar com algumas de suas deficiências neste artigo.

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 6): Dois indicadores RSI cruzam suas linhas
Por Expert Advisor multimoeda, nesta seção, entende-se um EA ou robô de trading que utiliza dois indicadores RSI com linhas cruzadas, isto é, um RSI rápido que cruza um RSI lento.

Desenvolvendo um fator de qualidade para os EAs
Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).

Criação de um Expert Advisor simples em várias moedas usando MQL5 (Parte 4): Média móvel triangular — Sinais do indicador
Neste artigo, por EA multimoeda, entendemos um robô investidor, ou um robô de negociação, que pode negociar (abrir/fechar ordens, gerenciar ordens, por exemplo, do tipo trailing stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, em particular a média móvel triangular em um ou mais timeframes, ou escalas de tempo.