
Redes neurais em trading: Usando modelos de linguagem para previsão de séries temporais
Continuamos a analisar modelos de previsão de séries temporais. Neste artigo, proponho a apresentação de um algoritmo complexo baseado no uso de um modelo de linguagem previamente treinado.

EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram
Neste artigo, criaremos um EA na linguagem MQL5 que enviará mensagens para o Telegram por meio de um bot. Configuraremos os parâmetros necessários, incluindo o token de API do bot e o identificador do chat, e então realizaremos uma requisição HTTP POST para entregar as mensagens. Em seguida, processaremos a resposta para garantir a entrega bem-sucedida e lidaremos com possíveis erros.

Redes neurais em trading: Resultados práticos do método TEMPO
Damos continuidade à exploração do método TEMPO. Neste artigo, avaliaremos a eficácia prática das abordagens propostas com base em dados históricos reais.

Negociação automatizada em grade usando ordens pendentes de stop na Bolsa de Moscou (MOEX)
Uso da abordagem de negociação em grade com ordens pendentes de stop em um Expert Advisor usando a linguagem de estratégias de negociação MQL5 para o MetaTrader 5 na Bolsa de Valores de Moscou (MOEX). Ao negociar no mercado, uma das estratégias mais simples é uma grade de ordens projetada para "capturar" o preço de mercado.

Gerenciador de riscos para trading algorítmico
Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.

Redes neurais de maneira fácil (Parte 92): Previsão adaptativa nas áreas de frequência e tempo
Os autores do método FreDF confirmaram experimentalmente a vantagem da previsão combinada nas áreas de frequência e tempo. No entanto, o uso de um hiperparâmetro de ponderação não é ideal para séries temporais não estacionárias. Neste artigo, proponho que você conheça um método de combinação adaptativa de previsões nas áreas de frequência e tempo.

Redes neurais de maneira fácil (Parte 32): Aprendizado Q distribuído
Em um dos artigos desta série, já nos iniciamos no método aprendizado Q, que calcula a média da recompensa para cada ação. Em 2017, foram apresentados 2 trabalhos simultâneos, que tiveram sucesso quanto ao estudo da função de distribuição de recompensas. Vamos considerar a possibilidade de usar essa tecnologia para resolver nossos problemas.

Redes neurais de maneira fácil (Parte 16): Uso prático do agrupamento
No artigo anterior, construímos uma classe para agrupamento de dados. Hoje eu gostaria de compartilhar com vocês as formas mediante as quais os resultados podem ser usados para resolver problemas práticos de negociação.

Redes neurais de maneira fácil (Parte 45): Ensinando habilidades para investigar estados
Aprender habilidades úteis sem uma função de recompensa explícita é um dos principais desafios do aprendizado por reforço hierárquico. Anteriormente, já nos familiarizamos com dois algoritmos para resolver esse problema. Mas a questão da completa exploração do ambiente ainda está em aberto. Neste artigo, é apresentada uma abordagem diferente para o treinamento de habilidades, cujo uso depende diretamente do estado atual do sistema.

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5
O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.

Redes neurais de maneira fácil (Parte 42): Procrastinação do modelo, causas e métodos de resolução
A procrastinação de modelos no contexto do aprendizado por reforço pode ser causada por vários motivos, e a solução desse problema requer medidas apropriadas. Este artigo discute algumas das possíveis causas da procrastinação do modelo e métodos para superá-las.

Avaliando o desempenho futuro com intervalos de confiança
Neste artigo, vamos explorar o uso do bootstrapping como um meio de avaliar a eficácia futura de uma estratégia automatizada.

Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo
Nesta série, continuamos a desvendar os segredos da programação. No novo artigo, vamos estudar as bases das estruturas, classes e funções de tempo e adquirir novas habilidades para programação eficiente. Este guia pode ser útil não apenas para iniciantes, mas também para desenvolvedores experientes, pois simplifica conceitos complexos, fornecendo informações valiosas para dominar o MQL5. Continue aprendendo coisas novas, aperfeiçoe suas habilidades de programação e domine o mundo da negociação algorítmica.

Abordagem quantitativa na gestão de riscos: aplicação do modelo VaR para otimização de portfólio multimoeda com Python e MetaTrader 5
Neste artigo, revelamos o potencial do modelo Value at Risk (VaR) para a otimização de portfólios multimoeda. Utilizando o Python e as funcionalidades do MetaTrader 5, demonstramos como implementar a análise VaR para uma distribuição eficiente de capital e gerenciamento de posições. Desde os fundamentos teóricos até a implementação prática, o artigo abrange todos os aspectos da aplicação de um dos sistemas mais robustos de cálculo de risco — o VaR — no trading algorítmico.

Redes neurais de maneira fácil (Parte 71): Previsão de estados futuros com base em objetivos (GCPC)
Nos trabalhos anteriores, conhecemos o método Decision Transformer e vários algoritmos derivados dele. Experimentamos com diferentes métodos de definição de objetivos. Durante os experimentos, trabalhamos com diferentes maneiras de definir objetivos, mas o estudo da trajetória já percorrida pelo modelo sempre ficou fora de nosso foco. Neste artigo, quero apresentar um método que preenche essa lacuna.

Redes neurais de maneira fácil (Parte 57): Stochastic Marginal Actor-Critic (SMAC)
Apresentamos um algoritmo relativamente novo, o Stochastic Marginal Actor-Critic (SMAC), que permite a construção de políticas de variáveis latentes no contexto da maximização da entropia.

Implementando uma Estratégia de Negociação com Bandas de Bollinger usando MQL5: Um Guia Passo a Passo
Um guia passo a passo para implementar um algoritmo de negociação automatizado em MQL5 baseado na estratégia de Bandas de Bollinger. Um tutorial detalhado sobre a criação de um Expert Advisor que pode ser útil para traders.

Teoria do caos no trading (Parte 1): Introdução, aplicação nos mercados financeiros e o indicador de Lyapunov
É possível aplicar a teoria do caos nos mercados financeiros? Vamos explorar nesta matéria como a teoria clássica do caos e os sistemas caóticos diferem do conceito proposto por Bill Williams.

Redes neurais de maneira fácil (Parte 44): Explorando habilidades de forma dinâmica
No artigo anterior, apresentamos o método DIAYN, que oferece um algoritmo para aprender uma variedade de habilidades. O uso das habilidades adquiridas pode ser usado para diversas tarefas. Mas essas habilidades podem ser bastante imprevisíveis, o que pode dificultar seu uso. Neste artigo, veremos um algoritmo para ensinar habilidades previsíveis.

Redes neurais em trading: Método abrangente de previsão de trajetórias (Traj-LLM)
Neste artigo, quero apresentar a você um método interessante de previsão de trajetórias, desenvolvido para resolver problemas relacionados ao movimento autônomo de veículos. Os autores do método combinaram os melhores elementos de diferentes soluções arquitetônicas.

Teoria das Categorias em MQL5 (Parte 10): Grupos monoides
Esse artigo é uma continuação da série sobre como implementar a teoria das categorias em MQL5. Nele, consideramos os grupos monoides como um meio de normalizar os conjuntos monoides e permitir uma comparação mais precisa em um espectro mais amplo de conjuntos monoides e tipos de dados.

Redes neurais de maneira fácil (Parte 96): Extração multinível de características (MSFformer)
A extração e integração eficazes de dependências de longo prazo e características de curto prazo continuam sendo uma tarefa importante na análise de séries temporais. Compreendê-las e integrá-las corretamente é necessário para criar modelos preditivos precisos e confiáveis.

Combine Estratégias de Análise Fundamental e Técnica no MQL5 Para Iniciantes
Neste artigo, discutiremos como integrar princípios de seguimento de tendência e análise fundamental em um único Expert Advisor para construir uma estratégia mais robusta. Este artigo demonstrará como qualquer pessoa pode facilmente começar a construir algoritmos de trading personalizados usando MQL5.

Redes neurais em trading: Aumentando a eficiência do Transformer por meio da redução da nitidez (SAMformer)
O treinamento de modelos Transformer exige grandes volumes de dados e muitas vezes é dificultado pela fraca capacidade dos modelos de generalizar em amostras pequenas. O framework SAMformer ajuda a resolver esse problema ao evitar mínimos locais ruins. E aumenta a eficiência dos modelos mesmo em conjuntos de treinamento limitados.

Redes neurais de maneira fácil (Parte 24): Melhorando a ferramenta para transferência de aprendizado
No último artigo, elaboramos uma ferramenta para criar e editar a arquitetura de redes neurais. E hoje quero convidá-lo a continuar trabalhando nela, para torná-la mais amigável. De certa forma, ao fazer isso, estamos nos afastando um pouco do nosso tópico. Mas convenhamos que a organização do espaço de trabalho desempenha um papel importante na obtenção do resultado.

Como construir e otimizar um sistema de negociação baseado em volatilidade (Chaikin Volatility - CHV)
Neste artigo, vamos apresentar outro indicador baseado em volatilidade, chamado Chaikin Volatility. Vamos entender como construir um indicador personalizado, após identificar como ele pode ser usado e construído. Vamos compartilhar algumas estratégias simples que podem ser usadas e, em seguida, testá-las para entender qual delas pode ser melhor.

Teoria das Categorias em MQL5 (Parte 11): Grafos
Esse artigo é uma continuação da série sobre como implementar a teoria das categorias no MQL5. Aqui consideramos como a teoria dos grafos pode ser integrada com monoides e outras estruturas de dados ao desenvolver uma estratégia para fechar um sistema de negociação.

Redes neurais em trading: Modelos "leves" para previsão de séries temporais
Os modelos leves para previsão de séries temporais oferecem alto desempenho utilizando uma quantidade mínima de parâmetros. Isso reduz o consumo de recursos computacionais e acelera a tomada de decisões. Ao mesmo tempo, eles alcançam qualidade de previsão comparável à de modelos mais complexos.

EA MQL5 integrado ao Telegram (Parte 2): Envio de sinais do MQL5 para o Telegram
Nesta parte do artigo, vamos criar um EA MQL5 integrado ao Telegram que envia sinais de cruzamento de médias móveis para o mensageiro. Descreveremos detalhadamente o processo de geração de sinais de negociação com base nesses cruzamentos, implementaremos o código necessário em MQL5 e garantiremos uma integração contínua. Como resultado, teremos um sistema que envia alertas de negociação em tempo real diretamente para um grupo no Telegram.

Redes neurais de maneira fácil (Parte 54): usando o codificador aleatório para exploração eficiente (RE3)
A cada vez que consideramos métodos de aprendizado por reforço, nos deparamos com a questão da exploração eficiente do ambiente. A solução deste problema frequentemente leva à complexificação do algoritmo e ao treinamento de modelos adicionais. Neste artigo, vamos considerar uma abordagem alternativa para resolver esse problema.

Multibot no MetaTrader (Parte II): Modelo dinâmico aprimorado
Desenvolvendo o tema do artigo anterior, decidi criar um modelo mais flexível e funcional que possui maiores capacidades e pode ser usado de forma eficaz tanto em freelancing quanto como base para o desenvolvimento de EAs multicurrency e multiperíodo com a capacidade de integrar com soluções externas.

Estratégia de Trading Cascade Order Baseada em Cruzamentos de EMA para MetaTrader 5
Este artigo orienta sobre como demonstrar um algoritmo automatizado baseado em cruzamentos de EMA para MetaTrader 5. Informações detalhadas sobre todos os aspectos de demonstrar um Expert Advisor em MQL5 e testá-lo no MetaTrader 5 – desde a análise de comportamentos de faixa de preços até o gerenciamento de risco.

Redes neurais e m trading: Aumento da eficiência do Transformer por meio da redução da nitidez (Conclusão)
O SAMformer propõe uma solução para os principais problemas do Transformer na previsão de séries temporais de longo prazo, incluindo a complexidade do treinamento e a fraca capacidade de generalização em amostras pequenas. Sua arquitetura rasa e a otimização com consideração da nitidez garantem o desvio de mínimos locais ruins. Neste artigo, continuaremos a implementação das abordagens utilizando MQL5 e avaliaremos seu valor prático.

Desenvolvimento de um EA baseado na estratégia de rompimento do intervalo de consolidação em MQL5
O artigo descreve os passos para criar um EA (Expert Advisor) que aproveita os rompimentos de preços após períodos de consolidação. Ao identificar esses intervalos e estabelecer os níveis de rompimento, os traders podem automatizar suas decisões de negociação com base nessa estratégia. O EA foi projetado para fornecer pontos claros de entrada e saída, evitando rompimentos falsos.

Negociação algorítmica baseada em padrões de reversão 3D
Estamos abrindo um novo mundo de trading automatizado em barras 3D. Como seria um robô de trading operando em barras multidimensionais de preço, e será que os clusters “amarelos” das barras 3D conseguem prever reversões de tendência? Como é o trading em múltiplas dimensões?

Criando um algoritmo de market making no MQL5
Como funcionam os market makers no mercado? Vamos explorar isso e criar um algoritmo simples de market making.

Redes neurais de maneira fácil (Parte 20): autocodificadores
Continuamos a estudar algoritmos de aprendizado não supervisionado. Talvez você como o leitor possa ter dúvidas sobre se as publicações recentes se encaixam no tópico de redes neurais. Neste novo artigo, voltamos ao uso de redes neurais.

Estratégia de Bill Williams com e sem outros indicadores e previsões
Neste artigo, vamos dar uma olhada em uma das estratégias famosas de Bill Williams, discuti-la e tentar melhorá-la com outros indicadores e previsões.

Criando uma Interface Gráfica de Usuário Interativa em MQL5 (Parte 2): Adicionando Controles e Responsividade
Melhorar o painel GUI do MQL5 com recursos dinâmicos pode melhorar significativamente a experiência de negociação para os usuários. Ao incorporar elementos interativos, efeitos de hover e atualizações de dados em tempo real, o painel se torna uma ferramenta poderosa para os traders modernos.

Redes neurais de maneira fácil (Parte 93): Previsão adaptativa nas áreas de frequência e tempo (Conclusão)
Neste artigo, continuamos a implementação das abordagens do ATFNet — um modelo que adapta e combina os resultados de 2 blocos (frequencial e temporal) de previsão de séries temporais.