Artigos com exemplos de como programar robôs de negociação na linguagem MQL5

icon

Os experts são o coração da negociação automatizada e o objetivo de toda pessoa que programa estratégias de trading. Você pode criar seu próprio robô de negociação com a ajuda dos artigos desta seção. Os principiantes podem seguir passo a passo todas as etapas dos sistemas de negociação automatizados: criação, depuração e teste.

Os artigos ensinam não apenas como programar em MQL5, mas também mostram como implementar quaisquer ideias e técnicas de negociação. Aprenda a programar um trailing stop, a aplicar o gerenciamento de dinheiro, a calcular o valor de um indicador e muito, muito mais.

Novo artigo
recentes | melhores
preview
Redes neurais de maneira fácil (Parte 14): Agrupamento de dados

Redes neurais de maneira fácil (Parte 14): Agrupamento de dados

Devo confessar que já se passou mais de um ano desde que o último artigo foi publicado. Em um período tão longo como esse, é possível reconsiderar muitas coisas, desenvolver novas abordagens. E neste novo artigo, gostaria de me afastar um pouco do método de aprendizado supervisionado usado anteriormente, e sugerir um pouco de mergulho nos algoritmos de aprendizado não supervisionado. E, em particular, desejaria analisar um dos algoritmos de agrupamento, o k-médias (k-means).
preview
Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)

Redes neurais de maneira fácil (Parte 21): Autocodificadores variacionais (VAE)

No último artigo, analisamos o algoritmo do autocodificador. Como qualquer outro algoritmo, tem suas vantagens e desvantagens. Na implementação original, o autocodificador executa a tarefa de separar os objetos da amostra de treinamento o máximo possível. E falaremos sobre como lidar com algumas de suas deficiências neste artigo.
preview
EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram

EA MQL5 integrado ao Telegram (Parte 1): Envio de mensagens do MQL5 para o Telegram

Neste artigo, criaremos um EA na linguagem MQL5 que enviará mensagens para o Telegram por meio de um bot. Configuraremos os parâmetros necessários, incluindo o token de API do bot e o identificador do chat, e então realizaremos uma requisição HTTP POST para entregar as mensagens. Em seguida, processaremos a resposta para garantir a entrega bem-sucedida e lidaremos com possíveis erros.
preview
Desenvolvendo um fator de qualidade para os EAs

Desenvolvendo um fator de qualidade para os EAs

Nesse artigo vamos explicar como desenvolver um fator de qualidade para ser retornado pelo seu EA no testador de estratégia. Iremos mostrar duas formas de cálculo conhecidas (Van Tharp e Sunny Harris).
preview
Análise quantitativa no MQL5: implementando um algoritmo promissor

Análise quantitativa no MQL5: implementando um algoritmo promissor

Vamos explorar o que é a análise quantitativa, como os grandes players a utilizam e criar um dos algoritmos de análise quantitativa na linguagem MQL5.
preview
Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Redes neurais de maneira fácil (Parte 36): Modelos relacionais de aprendizado por reforço

Nos modelos de aprendizado por reforço discutidos anteriormente, usamos diferentes variantes de redes convolucionais, que são capazes de identificar diferentes corpos nos dados brutos. A principal vantagem das redes convolucionais é sua capacidade de identificar objetos independentemente de sua localização. No entanto, as redes convolucionais nem sempre são capazes de lidar com as diversas deformações e ruídos que os objetos apresentam. Mas esses problemas podem ser resolvidos pelo modelo relacional.
preview
Encapsulando modelos ONNX em classes

Encapsulando modelos ONNX em classes

A programação orientada a objetos permite criar códigos mais compactos, fáceis de ler e modificar. Apresentamos um exemplo para três modelos ONNX.
preview
Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

Funcionalidades do assistente MQL5 que você precisa conhecer (Parte 6): transformada de Fourier

A transformada de Fourier é um método de decompor uma onda de pontos de dados em possíveis partes constituintes que foi introduzida por Joseph Fourier. Esse recurso pode ser útil para os traders, e é isso que abordaremos neste artigo.
preview
Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

Desenvolvendo uma estratégia Martingale de Recuperação de Zona em MQL5

O artigo discute, de forma detalhada, os passos que precisam ser implementados para a criação de um advisor especializado baseado no algoritmo de negociação de Recuperação de Zona. Isso ajuda a automatizar o sistema, economizando tempo para os negociadores algorítmicos.
preview
Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA

Auto-otimização de take-profits e parâmetros do indicador usando SMA e EMA

Este artigo apresenta um EA avançado para negociação no mercado Forex, que combina aprendizado de máquina com análise técnica. Ele é projetado para operar ações da Apple por meio de otimização adaptativa, gerenciamento de risco e múltiplas estratégias. Testes com dados históricos têm apresentado resultados promissores, embora também tenham evidenciado retrações significativas, indicando potencial para melhorias adicionais.
preview
Redes neurais de maneira fácil (Parte 46): Aprendizado por reforço condicionado a metas (GCRL)

Redes neurais de maneira fácil (Parte 46): Aprendizado por reforço condicionado a metas (GCRL)

Convido você a conhecer mais uma abordagem no campo do aprendizado por reforço. É chamada de aprendizado por reforço condicionado a metas, conhecida pela sigla GCRL (Goal-conditioned reinforcement learning). Nessa abordagem, o agente é treinado para alcançar diferentes metas em cenários específicos.
preview
Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Introdução ao MQL5 (Parte 3): Estudando os elementos básicos do MQL5

Neste artigo, continuamos a estudar os fundamentos da programação em MQL5. Vamos abordar arrays, funções personalizadas, pré-processadores e manipulação de eventos. Para maior clareza, cada passo de todas as explicações será acompanhado por código. Esta série de artigos estabelece a base para o estudo do MQL5, com ênfase na explicação de cada linha de código.
preview
Redes neurais de maneira fácil (Parte 37): atenção esparsa

Redes neurais de maneira fácil (Parte 37): atenção esparsa

No artigo anterior, abordamos modelos relacionais que usavam mecanismos de atenção. Uma das características desses modelos era o aumento do uso de recursos computacionais. O artigo de hoje apresenta um dos mecanismos para reduzir o número de operações computacionais dentro do bloco Self-Attention, o que aumenta o desempenho geral do modelo.
preview
Redes neurais de maneira fácil (Parte 18): Regras de associação

Redes neurais de maneira fácil (Parte 18): Regras de associação

Como continuação desta série, gostaria de apresentar a vocês outro tipo de tarefa dos métodos de aprendizado não supervisionado, em particular a busca de regras de associação. Este tipo de tarefa foi usado pela primeira vez no varejo para analisar cestas de compras. Neste artigo falaremos sobre as possibilidades de utilização de tais algoritmos no trading.
preview
Redes neurais de maneira fácil (Parte 50): Soft Actor-Critic (otimização do modelo)

Redes neurais de maneira fácil (Parte 50): Soft Actor-Critic (otimização do modelo)

No artigo anterior, implementamos o algoritmo Soft Actor-Critic, mas não conseguimos treinar um modelo lucrativo. Neste artigo, vamos realizar a otimização do modelo previamente criado para obter os resultados desejados a nível de seu funcionamento.
preview
Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Redes neurais de maneira fácil (Parte 34): Função quantil totalmente parametrizada

Continuamos a estudar os algoritmos de aprendizado Q distribuído. Em artigos anteriores, já discutimos os algoritmos de aprendizado Q distribuído e de quantil. No primeiro, aprendemos as probabilidades de determinados intervalos de valores. No segundo, aprendemos intervalos com uma probabilidade específica. Em ambos os algoritmos, utilizamos o conhecimento prévio de uma distribuição e ensinamos a outra. Neste artigo, vamos examinar um algoritmo que permite que o modelo aprenda ambas as distribuições.
preview
Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Redes neurais de maneira fácil (Parte 15): Agrupamento de dados via MQL5

Continuamos a estudar o método de agrupamento. Neste artigo, criaremos uma nova classe CKmeans para implementar um dos métodos de agrupamento k-médias mais comuns. Com base nos resultados dos testes, podemos concluir que o modelo é capaz de identificar cerca de 500 padrões.
preview
Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

Redes neurais de maneira fácil (Parte 31): Algoritmos evolutivos

No último artigo, iniciamos a análise dos métodos de otimização sem gradiente, e nos familiarizamos com o algoritmo genético. Hoje, continuaremos a discutir o mesmo assunto e também examinaremos outra classe de algoritmos evolutivos.
preview
Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Redes neurais de maneira fácil (Parte 38): Exploração auto-supervisionada via desacordo (Self-Supervised Exploration via Disagreement)

Um dos principais desafios do aprendizado por reforço é a exploração do ambiente. Anteriormente, já nos iniciamos no método de exploração baseado na curiosidade interna. E hoje proponho considerar outro algoritmo, o de exploração por desacordo.
preview
Análise de Sentimento e Deep Learning para Trading com EA e Backtesting com Python

Análise de Sentimento e Deep Learning para Trading com EA e Backtesting com Python

Neste artigo, vamos introduzir a Análise de Sentimento e Modelos ONNX com Python para serem usados em um EA. Um script executa um modelo ONNX treinado do TensorFlow para previsões de deep learning, enquanto outro busca manchetes de notícias e quantifica o sentimento usando IA.
preview
Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente

Experimentos com redes neurais (Parte 6): O perceptron como uma ferramenta de previsão de preços autossuficiente

Veja um exemplo do uso do perceptron como um meio autossuficiente de previsão de preços. Esse artigo aborda conceitos gerais, apresenta um Expert Advisor simples e pronto para uso e os resultados de sua otimização.
preview
Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Redes neurais de maneira fácil (Parte 23): Criando uma ferramenta para transferência de aprendizado

Nesta série de artigos, já mencionamos a transferência de aprendizado mais de uma vez. Mas até agora o assunto não foi além das menções. Sugiro preencher essa lacuna e dar uma olhada mais de perto na transferência de aprendizado.
preview
Gerenciador de riscos para trading algorítmico

Gerenciador de riscos para trading algorítmico

Os objetivos deste artigo são: demonstrar a necessidade obrigatória de um gerenciador de riscos, adaptar os princípios de controle de risco para trading algorítmico em uma classe específica, permitindo que todos possam comprovar, de forma independente, a eficácia da abordagem de normalização de risco no day trading e em investimentos nos mercados financeiros. Neste artigo, exploraremos em detalhes a criação de uma classe de gerenciador de riscos para trading algorítmico, continuando o tópico abordado no artigo anterior sobre o gerenciador de riscos para trading manual.
preview
Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Redes neurais de maneira fácil (Parte 28): algoritmo de gradiente de política

Continuamos a estudar métodos de aprendizado por reforço. No artigo anterior, nos iniciamos no método de aprendizado Q profundo. Com ele, treinamos um modelo para prever a recompensa imediata dependendo da ação tomada por nós em uma determinada situação. E, em seguida, realizamos uma ação de acordo com nossa política e a recompensa esperada. Mas nem sempre é possível aproximar a função Q ou nem sempre sua aproximação dá o resultado desejado. Nesses casos, os métodos de aproximação são usados não para funções de utilidade, mas, sim, para uma política (estratégia) direta de ações. E é precisamente a esses métodos que o gradiente de política pertence.
preview
Experimentos com redes neurais (Parte 4): Padrões

Experimentos com redes neurais (Parte 4): Padrões

As redes neurais são tudo para nós. E vamos verificar na prática se é assim, indagando se MetaTrader 5 é uma ferramenta autossuficiente para implementar redes neurais na negociação. A explicação vai ser simples.
preview
Gerenciador de risco para operar manualmente

Gerenciador de risco para operar manualmente

Neste artigo, falaremos em detalhes sobre como escrever uma classe gerenciadora de risco para negociar manualmente a partir do zero. Essa classe também poderá servir como base para os traders que operam usando programação.
preview
Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Redes neurais de maneira fácil (Parte 35): Módulo de curiosidade intrínseca

Continuamos a explorar algoritmos de aprendizado por reforço. Todos os algoritmos que analisamos até agora exigiam a criação de uma política de recompensa de tal forma que o agente pudesse avaliar cada uma de suas ações em cada transição de um estado do sistema para outro. No entanto, essa abordagem é bastante artificial. Na prática, existe um intervalo de tempo entre a ação e a recompensa. Neste artigo, proponho que você se familiarize com um algoritmo de aprendizado de modelo capaz de lidar com diferentes atrasos temporais entre a ação e a recompensa.
preview
Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Dominando a Dinâmica do Mercado: Criando um Expert Advisor (EA) para Estratégia de Suporte e Resistência

Um guia abrangente para desenvolver um algoritmo de negociação automatizado baseado na estratégia de Suporte e Resistência. Informações detalhadas sobre todos os aspectos da criação de um expert advisor em MQL5 e testá-lo no MetaTrader 5 – desde a análise dos comportamentos de faixa de preço até o gerenciamento de risco.
preview
Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

Redes neurais de maneira fácil (Parte 59): dicotomia do controle (DoC)

No artigo anterior, nos familiarizamos com o transformador de decisões. Porém, o complexo ambiente estocástico do mercado de moedas não permitiu revelar totalmente o potencial do método apresentado. Hoje, quero apresentar a vocês um algoritmo focado em melhorar o desempenho dos algoritmos em ambientes estocásticos.
preview
Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Redes neurais de maneira fácil (Parte 49): Soft Actor-Critic (SAC)

Continuamos nossa exploração dos algoritmos de aprendizado por reforço na resolução de problemas em espaços de ação contínua. Neste artigo, apresento o algoritmo Soft Actor-Critic (SAC). A principal vantagem do SAC está em sua capacidade de encontrar políticas ótimas que não apenas maximizam a recompensa esperada, mas também têm a máxima entropia (diversidade) de ações.
preview
Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Desenvolvendo um EA multimoeda (Parte 4): Ordens virtuais pendentes e salvamento de estado

Ao começar a desenvolver um EA multimoeda, já alcançamos alguns resultados e realizamos várias iterações de melhoria do código. No entanto, nosso EA não podia trabalhar com ordens pendentes e retomar o trabalho após reiniciar o terminal. Vamos adicionar essas funcionalidades.
preview
Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

Teoria das Categorias em MQL5 (Parte 6): produtos fibrados monomórficos e coprodutos fibrados epimórficos

A teoria das categorias é um ramo diversificado e em expansão da matemática que só recentemente começou a ser abordado na comunidade MQL5. Esta série de artigos tem como objetivo analisar alguns de seus conceitos para criar uma biblioteca aberta e utilizar ainda mais essa maravilhosa seção na criação de estratégias de negociação.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 3): Prefixos/sufixos de símbolos e sessão de negociação

Recebi comentários de vários colegas traders sobre como usar o Expert Advisor multimoedas que estou analisando com corretoras que usam prefixos e/ou sufixos com nomes de símbolos, bem como sobre como implementar fusos horários de negociação ou sessões de negociação no Expert Advisor.
preview
Redes neurais em trading: Resultados práticos do método TEMPO

Redes neurais em trading: Resultados práticos do método TEMPO

Damos continuidade à exploração do método TEMPO. Neste artigo, avaliaremos a eficácia prática das abordagens propostas com base em dados históricos reais.
preview
Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Criando um Expert Advisor simples multimoeda usando MQL5 (Parte 2): Sinais do indicador - Parabolic SAR multiframe

Neste artigo, por EA multimoeda, entendemos um robô investidor ou um robô de negociação que pode negociar (abrir/fechar ordens, gerenciar ordens como trailing-stop-loss e trailing profit) mais de um par de moedas em um gráfico. Desta vez, usaremos apenas um indicador, o Parabolic SAR ou iSAR, em vários timeframes, começando com PERIOD_M15 e terminando com PERIOD_D1.
preview
Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

Implementação do EA Deus: Negociação automatizada com RSI e médias móveis em MQL5

O artigo descreve as etapas para a implementação do EA Deus baseado nos indicadores RSI e média móvel para gerenciar a negociação automatizada.
preview
Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

Redes neurais de maneira fácil (Parte 48): métodos para reduzir a superestimação dos valores da função Q

No artigo anterior, nós exploramos o método DDPG, projetado para treinar modelos em espaços de ação contínua. No entanto, como outros métodos de aprendizado Q, ele está sujeito ao problema da sobreavaliação dos valores da função Q. Esse problema geralmente leva eventualmente ao treinamento de um agente com uma estratégia não otimizada. Neste artigo, examinaremos algumas abordagens para superar o problema mencionado.
preview
Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Redes neurais de maneira fácil (Parte 89): Transformador de decomposição por frequência do sinal (FEDformer)

Todos os modelos que analisamos anteriormente examinam o estado do ambiente na forma de uma sequência temporal. No entanto, a mesma série temporal pode ser representada por suas características de frequência. Neste artigo, proponho que você conheça um algoritmo que utiliza as características de frequência da sequência temporal para prever estados futuros.
preview
Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Redes neurais de maneira fácil (Parte 22): Aprendizado não supervisionado de modelos recorrentes

Continuamos a estudar algoritmos de aprendizado não supervisionado. E agora proponho discutir as particularidades por trás do uso de autocodificadores para treinar modelos recorrentes.
preview
Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo

Introdução ao MQL5 (Parte 4): Estruturas, classes e funções de tempo

Nesta série, continuamos a desvendar os segredos da programação. No novo artigo, vamos estudar as bases das estruturas, classes e funções de tempo e adquirir novas habilidades para programação eficiente. Este guia pode ser útil não apenas para iniciantes, mas também para desenvolvedores experientes, pois simplifica conceitos complexos, fornecendo informações valiosas para dominar o MQL5. Continue aprendendo coisas novas, aperfeiçoe suas habilidades de programação e domine o mundo da negociação algorítmica.