
ニューラルネットワークの実践:最小二乗法
この記事では、数式がコードで実装されたときよりも見た目が複雑になる理由など、いくつかのアイデアについて説明します。さらに、チャートの象限を設定する方法と、MQL5コードで発生する可能性のある1つの興味深い問題についても検討します。正直に言うと、まだどう説明すればいいのかよくわかりません。とにかく、コードで修正する方法を紹介します。

行列分解:より実用的なモデリング
行と列ではなく列のみが指定されているため、行列モデリングが少し奇妙であることに気付かなかったかもしれません。行列分解を実行するコードを読むと、これは非常に奇妙に見えます。行と列がリストされていることを期待していた場合、因数分解しようとしたときに混乱する可能性があります。さらに、この行列モデリング方法は最適ではありません。これは、この方法で行列をモデル化すると、いくつかの制限に遭遇し、より適切な方法でモデル化がおこなわれていれば必要のない他の方法や関数を使用せざるを得なくなるためです。

市場イベント予測のための因果ネットワーク分析(CNA)とベクトル自己回帰モデルの例
この記事では、MQL5で因果ネットワーク分析(CNA: Causal Network Analysis)とベクトル自己回帰(VAR: Vector Autoregression)デルを使用した高度な取引システムを実装するための包括的なガイドを紹介します。これらの手法の理論的背景をカバーし、取引アルゴリズムにおける主要な機能を詳細に説明し、実装のためのサンプルコードも含んでいます。

知っておくべきMQL5ウィザードのテクニック(第35回):サポートベクトル回帰
サポートベクトル回帰(SVR)は、2つのデータセット間の関係を最も適切に表現する関数または「超平面」を見つけるための理想的な手法です。本稿では、MQL5ウィザードのカスタムクラス内での時系列予測において、この手法を活用することを試みます。

知っておくべきMQL5ウィザードのテクニック(第34回):非従来型RBMによる価格の埋め込み
制限ボルツマンマシンは、1980年代半ば、計算資源が非常に高価だった時代に開発されたニューラルネットワークの一種です。当初は、入力された訓練データセットの次元を削減し、隠れた確率や特性を捉えるために、ギブスサンプリングとコントラストダイバージェンス(Contrastive Divergence)に依存していました。RBMが予測用の多層パーセプトロンに価格を「埋め込む」場合、バックプロパゲーションがどのように同様の性能を発揮できるかを検証します。

MQL5とデータ処理パッケージの統合(第2回):機械学習と予測分析
本連載では、MQL5とデータ処理パッケージの統合について考察し、機械学習と予測分析の強力な組み合わせを深掘りします。MQL5と一般的な機械学習ライブラリをシームレスに接続することで、金融市場向けの高度な予測モデルを実現する方法を探ります。

知っておくべきMQL5ウィザードのテクニック(第32回):正則化
正則化とは、ニューラルネットワークのさまざまな層全体に適用される離散的な重み付けに比例して、損失関数にペナルティを与える形式です。様々な正則化形式について、ウィザードで組み立てたEAを使ったテスト実行で、この正則化が持つ重要性を見てみます。

どんな市場でも優位性を得る方法(第3回):VISA消費指数
ビッグデータの世界では、取引戦略を向上させる可能性を秘めた数百万もの代替データセットが存在します。この連載では、最も有益な公共データセットを特定するお手伝いをします。

古典的な戦略を再構築する(第6回):多時間枠分析
この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。

古典的な戦略を再構築する(第5回):USDZARの多銘柄分析
この連載では、古典的な戦略を再検討し、AIを使って戦略を改善できるかどうかを検証します。今日の記事では、複数の相関する証券をまとめて分析するという一般的な戦略について検討し、エキゾチックな通貨ペアであるUSDZAR(米ドル/南アフリカランド)に焦点を当てます。

古典的な戦略を再構築する(第4回):SP500と米財務省中期証券
この連載では、最新のアルゴリズムを用いて古典的な取引戦略を分析し、AIによって戦略を改善できるかどうかを検証します。本日の記事では、SP500と米財務省中期証券との関係を活用した古典的な取引手法を再考します。

コードロックアルゴリズム(CLA)
この記事では、コードロックを単なるセキュリティメカニズムとしてではなく、複雑な最適化問題を解くためのツールとして再考し、新たな視点から捉えます。セキュリティ装置にとどまらず、最適化への革新的アプローチのインスピレーション源となるコードロックの世界をご紹介します。各ロックが特定の問題の解を表す「ロック」の母集団を作り、機械学習や取引システム開発など様々な分野でこれらのロックを「ピッキング」し、最適解を見つけるアルゴリズムを構築します。

彗尾アルゴリズム(CTA)
この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。

亀甲進化アルゴリズム(TSEA)
これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。

ニューラルネットワークが簡単に(第88回):Time-series Dense Encoder (TiDE)
研究者たちは、より正確な予測を得るために、しばしばモデルを複雑化します。しかし、その結果として、モデルの訓練やメンテナンスにかかるコストも増加します。この増大したコストは常に正当化されるのでしょうか。本記事では、シンプルで高速な線形モデルの特性を活かし、複雑なアーキテクチャを持つ最新モデルに匹敵する結果を示すアルゴリズムを紹介します。

SMAとEMAを使った自動最適化された利益確定と指標パラメータの例
この記事では、機械学習とテクニカル分析を組み合わせた、FX取引向けの高度なEAを紹介します。アップル株取引を中心に、適応的な最適化やリスク管理、複数の取引戦略を活用しています。バックテストでは、収益性が高い一方で、大きなドローダウンを伴う結果が得られており、さらなる改良の余地が示唆されています。

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択
損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。

データサイエンスと機械学習(第29回):AI訓練に最適なFXデータを選ぶための重要なヒント
この記事では、AIモデルのパフォーマンスを向上させるために、最も適切で高品質なFXデータを選択するための重要な側面について深く掘り下げます。

知っておくべきMQL5ウィザードのテクニック(第30回):機械学習におけるバッチ正規化のスポットライト
バッチ正規化とは、ニューラルネットワークのような機械学習アルゴリズムに投入するデータの前処理です。これは、アルゴリズムが使用する活性化の種類を常に意識しながらおこなわれます。そこで、エキスパートアドバイザー(EA)を使って、そのメリットを享受するためのさまざまなアプローチを探ります。

MQL5とPythonで自己最適化エキスパートアドバイザーを構築する(第2回):ディープニューラルネットワークのチューニング
機械学習モデルには、様々な調整可能なパラメータがあります。この連載では、SciPyライブラリを使用して、特定の市場に合うようにAIモデルをカスタマイズする方法を探ります。

データサイエンスと機械学習(第28回):AIを使ってEURUSDの複数の先物を予測する
多くの人工知能モデルでは単一の将来値を予測することが一般的ですが、この記事では、機械学習モデルを用いて複数の将来値を予測するという強力な手法について掘り下げていきます。このアプローチは「多段階予測」として知られ、明日の終値だけでなく、明後日以降の値も予測することが可能です。多段階予測をマスターすることで、トレーダーやデータサイエンティストはより深い洞察を得ることができ、情報に基づいた意思決定を行うことで予測能力と戦略立案を大幅に強化することができます。

古典的な戦略をPythonで再構築する(第3回):高値更新と安値更新の予測
本連載では、古典的な取引戦略を実証的に分析し、AIを用いてそれらの改善が可能かどうかを検証します。本日の議論では、線形判別分析モデルを用いて高値更新と安値更新の予測に挑戦します。

MQL5とデータ処理パッケージの統合(第1回):高度なデータ分析と統計処理
統合により、MQL5から生の財務データをJupyter Labのようなデータ処理パッケージにインポートし、統計テストを含む高度な分析をおこなうシームレスなワークフローが実現します。

独自のLLMをEAに総合する(第5部): LLMを使った取引戦略の開発とテスト(I) - 微調整
今日の人工知能の急速な発展に伴い、言語モデル(LLM)は人工知能の重要な部分となっています。私たちは、強力なLLMをアルゴリズム取引に統合する方法を考える必要があります。ほとんどの人にとって、これらの強力なモデルをニーズに応じて微調整(ファインチューニング)し、ローカルに展開して、アルゴリズム取引に適用することは困難です。本連載では、この目標を達成するために段階的なアプローチをとっていきます。

知っておくべきMQL5ウィザードのテクニック(第29回):MLPの学習率についての続き
エキスパートアドバイザー(EA)のパフォーマンスに対する学習率の感度を、主に適応学習率を調べることでまとめます。これらの学習率は、訓練の過程で層の各パラメータごとにカスタマイズすることを目的としており、潜在的な利点と期待されるパフォーマンスの差を評価します。

知っておくべきMQL5ウィザードのテクニック(第28回):学習率に関する入門書によるGANの再検討
学習率(Learning Rate)とは、多くの機械学習アルゴリズムの学習プロセスにおいて、学習目標に向かうステップの大きさのことです。以前の記事で検証したニューラルネットワークの一種である生成的敵対的ネットワーク(GAN: Generative Adversarial Network)のパフォーマンスに、その多くのスケジュールと形式が与える影響を検証します。

データサイエンスと機械学習(第27回):MetaTrader 5取引ボットにおける畳み込みニューラルネットワーク(CNN)に価値はあるか?
畳み込みニューラルネットワーク(CNN)は、画像や映像のパターンを検出する能力に優れていることで有名で、さまざまな分野に応用されています。この記事では、金融市場の価値あるパターンを識別し、MetaTrader 5取引ボットのための効果的な取引シグナルを生成するCNNの可能性を探ります。このディープマシンラーニングの手法を、よりスマートな取引判断のためにどのように活用できるかを見てみましょう。

ニューラルネットワークが簡単に(第84回):RevIN (Reversible Normalization)
入力データの前処理がモデル訓練の安定性に大きく寄与することは、すでに広く知られています。オンラインで「生」の入力データを処理するために、バッチ正規化層が頻繁に使用されますが、時には逆の手順が求められる場合もあります。この記事では、この問題を解決するための1つのアプローチについて解説します。

ブレインストーム最適化アルゴリズム(第1部):クラスタリング
この記事では、「ブレインストーミング」と呼ばれる現象にヒントを得た、BSO (Brain Storm Optimization)と呼ばれる革新的な最適化手法を見ていきます。また、BSO法が適用するマルチモーダル最適化問題を解くための新しいアプローチについても説明します。これにより、部分集団の数を事前に決定することなく、複数の最適解を見つけることができるのです。K-MeansとK-Means++のクラスタリング法も検討します。

ニューラルネットワークが簡単に(第83回):「Conformer」Spatio-Temporal Continuous Attention Transformerアルゴリズム
この記事では、天気予報を目的に開発されたConformerアルゴリズムについて紹介します。天気の変動性や予測の難しさは、金融市場の動きとしばしば比較されます。Conformerは、Attentionモデルと常微分方程式の利点を組み合わせた高度な手法です。

因果推論における時系列クラスタリング
機械学習におけるクラスタリングアルゴリズムは、元データを類似した観察結果を持つグループに分けることができる重要な教師なし学習法です。これらのクラスタを用いることで、特定の市場クラスタを分析したり、新しいデータを基に最も安定したクラスタを探索したり、因果関係を推定したりすることが可能です。本稿では、Pythonによる時系列クラスタリングのための独自の手法を提案します。

行列分解:基本
ここでの目的は教訓を得ることなので、できるだけシンプルに話を進めたいと思います。具体的には、必要な行列の乗算だけを実装します。行列とスカラーの乗算をシミュレートするにはこれで十分であることが今日わかるでしょう。行列分解を実装する際に多くの人が直面する最大の課題は、スカラーの分解と異なり、因子の順序が結果に影響を与えるため、行列の場合はその点に注意が必要だということです。

データサイエンスと機械学習(第26回):時系列予測における究極の戦い - LSTM対GRUニューラルネットワーク
前回の記事では、データの長期的な依存関係をうまく捉えられないにもかかわらず、利益を上げる戦略を構築できる単純RNNについて説明しました。この記事では、LSTM (Long-Short Term Memory)とGRU (Gated Recurrent Unit)の両方について説明します。この2つは、単純RNNの欠点を克服し、それを凌駕するために紹介されました。

初心者のためのMQL5によるSP500取引戦略
MQL5を活用してS&P500指数を正確に予測する方法をご紹介します。古典的なテクニカル分析とアルゴリズム、そして長年の経験に裏打ちされた原理を組み合わせることで、安定性を高め、確かな市場洞察力を得られます。

固有ベクトルと固有値:MetaTrader 5での探索的データ分析
この記事では、データ内の特異な関係性を明らかにするために、固有ベクトルと固有値を探索的データ分析にどのように応用できるかを探ります。