Creación de un Panel de administración de operaciones en MQL5 (Parte IV): Capa de seguridad de inicio de sesión
Imagine un actor malicioso infiltrándose en la sala del administrador comercial y obteniendo acceso a las computadoras y al panel de administración que se utilizan para comunicar información valiosa a millones de comerciantes en todo el mundo. Una intrusión de este tipo podría tener consecuencias desastrosas, como el envío no autorizado de mensajes engañosos o clics aleatorios en botones que desencadenan acciones no deseadas. En esta discusión, exploraremos las medidas de seguridad en MQL5 y las nuevas características de seguridad que hemos implementado en nuestro Panel de administración para protegernos contra estas amenazas. Al mejorar nuestros protocolos de seguridad, nuestro objetivo es proteger nuestros canales de comunicación y mantener la confianza de nuestra comunidad comercial global. Encuentre más información en la discusión de este artículo.
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)
En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
Redes neuronales en el trading: Agente multimodal con herramientas complementarias (FinAgent)
Hoy querríamos presentarle el FinAgent, un framework de agente multimodal para el comercio financiero diseñado para analizar distintos tipos de datos que reflejan la dinámica del mercado y los patrones comerciales históricos.
Reimaginando las estrategias clásicas (Parte V): Análisis de múltiples símbolos en USDZAR
En esta serie de artículos, revisamos las estrategias clásicas para ver si podemos mejorarlas utilizando la IA. En el artículo de hoy, examinaremos una estrategia popular de análisis de símbolos múltiples utilizando una cesta de valores correlacionados, nos centraremos en el exótico par de divisas USDZAR.
Redes neuronales: así de sencillo (Parte 92): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo
Los autores del método FreDF confirmaron experimentalmente la ventaja de la previsión combinada en los ámbitos de la frecuencia y el tiempo. Sin embargo, el uso del hiperparámetro de peso no es óptimo para series temporales no estacionarias. En este artículo, nos familiarizaremos con el método de combinación adaptativa de previsiones en los ámbitos de la frecuencia y el tiempo.
Redes neuronales en el trading: Modelo adaptativo multiagente (Final)
En el artículo anterior, nos familiarizamos con el framework MASA, un framework adaptativo multiagente que combina enfoques de aprendizaje por refuerzo y estrategias adaptativas para ofrecer un equilibrio armonioso entre rentabilidad y riesgo en condiciones de mercado turbulentas. Asimismo, construimos la funcionalidad de los agentes individuales de este framework. En este artículo continuaremos el trabajo empezado, llevándolo a su conclusión lógica.
Redes neuronales en el trading: Aprendizaje contextual aumentado por memoria (Final)
Hoy finalizaremos la implementación del framework MacroHFT para el comercio de criptomonedas de alta frecuencia, que utiliza el aprendizaje de refuerzo consciente del contexto y el aprendizaje con memoria para adaptarse a las condiciones dinámicas del mercado. Y al final de este artículo, probaremos los enfoques aplicados con datos históricos reales para evaluar su eficacia.
Automatización de estrategias de trading en MQL5 (Parte 6): Dominar la detección de bloques de órdenes para el comercio inteligente con dinero
En este artículo, automatizamos la detección de bloques de órdenes en MQL5 utilizando análisis de acción de precios puro. Definimos bloques de órdenes, implementamos su detección e integramos la ejecución automatizada de operaciones. Por último, realizamos una prueba retrospectiva de la estrategia para evaluar su rendimiento.
Redes neuronales en el trading: Un método complejo de predicción de trayectorias (Traj-LLM)
En este artículo, me gustaría presentarles un interesante método de predicción de trayectorias desarrollado para resolver problemas en el campo de los movimientos de vehículos autónomos. Los autores del método combinaron los mejores elementos de varias soluciones arquitectónicas.
Redes neuronales en el trading: Superpoint Transformer (SPFormer)
En este artículo, nos familiarizaremos con un método de segmentación de objetos 3D basado en el Superpoint Transformer (SPFormer), que elimina la necesidad de agregar datos intermedios, lo cual acelera el proceso de segmentación y mejora el rendimiento del modelo.
Redes neuronales en el trading: Transformador jerárquico de doble torre (Hidformer)
Hoy le proponemos introducir un framework de transformador jerárquico de dos torres (Hidformer) desarrollado para la previsión de series temporales y el análisis de datos. Los autores del framework propusieron varias mejoras en la arquitectura del Transformer que mejoran la precisión de las predicciones y reducen el consumo de recursos computacionales.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 14): Herramienta Parabolic SAR (Stop and Reverse)
Incorporar indicadores técnicos en el análisis de la acción del precio es un enfoque muy eficaz. Estos indicadores suelen resaltar niveles clave de reversiones y retrocesos, lo que ofrece información valiosa sobre la dinámica del mercado. En este artículo, mostramos cómo desarrollamos una herramienta automatizada que genera señales utilizando el indicador Parabolic SAR.
Redes neuronales: así de sencillo (Parte 81): Razonamiento de movimiento guiado por el contexto de grueso a fino (CCMR, Coarse-to-Fine Context-Guided Motion Reasoning)
En trabajos anteriores, siempre evaluábamos el estado actual del entorno. Al mismo tiempo, la dinámica de los cambios en los indicadores siempre permaneció «entre bastidores». En este artículo quiero presentarle un algoritmo que permite evaluar el cambio directo de los datos entre 2 estados ambientales sucesivos.
Redes neuronales en el trading: Representación lineal por partes de series temporales
Este artículo es algo distinto de los anteriores de esta serie. En él, hablaremos de una representación alternativa de las series temporales. La representación lineal por partes de series temporales es un método de aproximación de una serie temporal usando funciones lineales en intervalos pequeños.
Operar con el Calendario Económico MQL5 (Parte 5): Mejorar el panel de control con controles adaptables y botones de filtro
En este artículo, creamos botones para filtros de pares de divisas, niveles de importancia, filtros de tiempo y una opción de cancelación para mejorar el control del panel. Estos botones están programados para responder dinámicamente a las acciones del usuario, lo que permite una interacción fluida. También automatizamos su comportamiento para reflejar los cambios en tiempo real en el panel de control. Esto mejora la funcionalidad general, la movilidad y la capacidad de respuesta del panel.
Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)
Este artículo ampliará la clase de gestión de operaciones para incluir órdenes de compra y venta con límite (buy-stop y sell-stop) con el fin de operar con eventos de noticias e implementar una restricción de vencimiento en estas órdenes para evitar cualquier operación nocturna. Se incorporará una función de deslizamiento (slippage) al experto para intentar prevenir o minimizar el posible deslizamiento que puede producirse al utilizar órdenes stop en las operaciones, especialmente durante eventos noticiosos.
Características del Wizard MQL5 que debe conocer (Parte 17): Negociación con multidivisas
La negociación con varias divisas no está disponible por defecto cuando se crea un asesor experto mediante el asistente. Examinamos dos posibles trucos que los operadores pueden utilizar para poner a prueba sus ideas con más de un símbolo a la vez.
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea
Le proponemos familiarizarse con un framework que combina la transformada de wavelet y el modelo multitarea Self-Attention con el objetivo de mejorar la capacidad de respuesta y la precisión de las previsiones en condiciones de mercado volátiles. La transformada de wavelet descompone los rendimientos de los activos en frecuencias altas y bajas, captando cuidadosamente las tendencias del mercado a largo plazo y las fluctuaciones a corto plazo.
Redes neuronales en el trading: Conjunto de agentes con mecanismos de atención (MASAAT)
Hoy le presentamos la estructura multiagente adaptativa de optimización de portafolios (MASAAT), que combina mecanismos de atención y análisis de series temporales. El MASAAT genera un conjunto de agentes que analizan series de precios y cambios direccionales, permitiendo identificar fluctuaciones sustanciales en los precios de los activos a diferentes niveles de detalle.
Redes neuronales en el trading: Detección adaptativa de anomalías del mercado (Final)
Seguimos construyendo los algoritmos que sustentan el framework DADA, una herramienta avanzada para detectar anomalías en las series temporales. Este enfoque permite distinguir eficazmente las fluctuaciones aleatorias de los valores atípicos significativos. A diferencia de los métodos clásicos, el DADA se adapta dinámicamente a los distintos tipos de datos, seleccionando el nivel de compresión óptimo en cada caso.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 6): Prevención del cierre de posiciones
Únase a nuestro debate de hoy, en el que buscaremos un procedimiento algorítmico para minimizar el número total de veces que nos detienen en operaciones ganadoras. El problema al que nos enfrentamos es muy complejo, y la mayoría de las soluciones que se plantean en los debates comunitarios carecen de normas establecidas y fijas. Nuestro enfoque algorítmico para resolver el problema aumentó la rentabilidad de nuestras operaciones y redujo nuestra pérdida media por operación. Sin embargo, aún quedan avances por realizar para filtrar completamente todas las operaciones que se detendrán. Nuestra solución es un buen primer paso que cualquiera puede probar.
Redes neuronales en el trading: Representación adaptativa de grafos (NAFS)
Hoy le proponemos familiarizarse con el método Node-Adaptive Feature Smoothing (NAFS), que supone un enfoque no paramétrico para crear representaciones de nodos que no requiere entrenamiento de parámetros. El NAFS extrae las características de cada nodo considerando sus vecinos y luego combina adaptativamente dichas características para formar la representación final.
Redes neuronales: así de sencillo (Parte 76): Exploración de diversos patrones de interacción con Multi-future Transformer
Este artículo continúa con el tema de la predicción del próximo movimiento de los precios. Le invito a conocer la arquitectura del Transformador Multifuturo. Su idea principal es descomponer la distribución multimodal del futuro en varias distribuciones unimodales, lo que permite simular eficazmente varios modelos de interacción entre agentes en la escena.
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 4): Dimensionamiento dinámico de posiciones
El uso exitoso del trading algorítmico requiere un aprendizaje continuo e interdisciplinario. Sin embargo, la infinita gama de posibilidades puede consumir años de esfuerzo sin producir resultados tangibles. Para abordar esta cuestión, proponemos un marco que introduce gradualmente la complejidad, lo que permite a los operadores perfeccionar sus estrategias de forma iterativa en lugar de dedicar un tiempo indefinido a resultados inciertos.
Dominando las operaciones con archivos en MQL5: desde E/S básicas hasta la creación de un lector CSV personalizado
Este artículo se centra en las técnicas esenciales de manejo de archivos MQL5, que abarcan registros de operaciones, procesamiento CSV e integración de datos externos. Ofrece tanto comprensión conceptual como orientación práctica sobre codificación. Los lectores aprenderán a crear paso a paso una clase de importador CSV personalizada, adquiriendo habilidades prácticas para aplicaciones del mundo real.
Redes neuronales: así de sencillo (Parte 96): Extracción multinivel de características (MSFformer)
Extraer y combinar eficazmente las dependencias a largo plazo y las características a corto plazo sigue siendo una tarea importante en el análisis de series temporales. Para crear modelos predictivos precisos y fiables deberemos comprender e integrar estos adecuadamente.
Modelos polinómicos en el trading
Este artículo trata sobre los polinomios ortogonales. Su uso puede suponer la base de un análisis más preciso y eficaz de la información del mercado, de modo que el tráder pueda tomar decisiones más informadas.
Redes neuronales en el trading: Sistema multiagente con validación conceptual (Final)
Seguimos aplicando los planteamientos propuestos por los autores del framework FinCon. FinCon es un sistema multiagente basado en grandes modelos lingüísticos (LLM). Hoy pondremos en marcha los módulos necesarios y efectuaremos pruebas exhaustivas del modelo con datos históricos reales.
Redes neuronales en el trading: Clusterización doble de series temporales (Final)
Continuamos implementando los enfoques propuestos por los autores del framework DUET, que ofrece un enfoque innovador para el análisis de series temporales, combinando la clusterización temporal y de canales para identificar patrones ocultos en los datos analizados.
Creación de un Panel de administración de operaciones en MQL5 (Parte VI): Interfaz de múltiples funciones (I)
La función del administrador de operaciones va más allá de las comunicaciones por Telegram; también puede participar en diversas actividades de control, como la gestión de órdenes, el seguimiento de posiciones y la personalización de interfaces. En este artículo, compartiremos información práctica sobre cómo ampliar nuestro programa para admitir múltiples funcionalidades en MQL5. Esta actualización tiene como objetivo superar la limitación actual del Panel de administración, que se centra principalmente en la comunicación, permitiéndole gestionar una gama más amplia de tareas.
Redes neuronales en el trading: Modelos con transformada de wavelet y atención multitarea (Final)
En el artículo anterior, analizamos los fundamentos teóricos y pusimos en práctica los planteamientos del framework Multitask-Stockformer, que combina la transformada de wavelet y el modelo multitarea Self-Attention. Hoy seguiremos aplicando los algoritmos del framework anterior y evaluaremos su eficacia con datos históricos reales.
Redes neuronales: así de sencillo (Parte 93): Predicción adaptativa en los ámbitos de la frecuencia y el tiempo (Parte final)
En este artículo, continuamos la aplicación de los planteamientos del modelo ATFNet, que combina de forma adaptativa los resultados de 2 bloques (frecuencia y tiempo) dentro de la predicción de series temporales.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 4): Analytics Forecaster EA
Estamos pasando de simplemente ver las métricas analizadas en gráficos a una perspectiva más amplia que incluye la integración de Telegram. Esta mejora permite que los resultados importantes se envíen directamente a tu dispositivo móvil a través de la aplicación Telegram. Acompáñenos en este viaje que exploraremos juntos en este artículo.
Creación de un Panel de administración de operaciones en MQL5 (Parte VIII): Panel de análisis
Hoy profundizamos en la incorporación de métricas de trading útiles dentro de una ventana especializada integrada en el EA del Panel de Administración.
Este debate se centra en la implementación de MQL5 para desarrollar un panel de análisis y destaca el valor de los datos que proporciona a los administradores de operaciones bursátiles. El impacto es principalmente educativo, ya que se extraen valiosas lecciones del proceso de desarrollo, lo que beneficia tanto a los desarrolladores noveles como a los experimentados. Esta función demuestra las oportunidades ilimitadas que ofrece esta serie de desarrollo al equipar a los gestores comerciales con herramientas de software avanzadas. Además, exploraremos la implementación de las clases PieChart y ChartCanvas como parte de la continua expansión de las capacidades del panel del administrador de operaciones.
Redes neuronales en el trading: Modelos híbridos de secuencias de grafos (GSM++)
Los modelos híbridos de secuencias de grafos (GSM++) combinan los puntos fuertes de distintas arquitecturas para posibilitar un análisis de datos de gran precisión y optimizar los costes computacionales. Estos modelos se adaptan eficazmente a los datos dinámicos del mercado, mejorando la presentación y el procesamiento de la información financiera.
Redes neuronales en el trading: Clusterización doble de series temporales (DUET)
El framework DUET ofrece un enfoque innovador del análisis de series temporales, combinando la clusterización temporal y por canales para revelar patrones ocultos en los datos analizados. Esto permite a los modelos adaptarse a los cambios a lo largo del tiempo y mejorar la calidad de las previsiones eliminando el ruido.
Redes neuronales: así de sencillo (Parte 97): Entrenamiento de un modelo con el MSFformer
Al estudiar las distintas arquitecturas de construcción de modelos, prestamos poca atención al proceso de entrenamiento de los mismos. En este artículo intentaremos rellenar ese vacío.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 9): Flujo externo
Este artículo explora una nueva dimensión del análisis utilizando librerías externas diseñadas específicamente para análisis avanzados. Estas librerías, como pandas, proporcionan potentes herramientas para procesar e interpretar datos complejos, lo que permite a los operadores obtener una visión más profunda de la dinámica del mercado. Al integrar estas tecnologías, podemos salvar la brecha entre los datos brutos y las estrategias viables. Únase a nosotros para sentar las bases de este enfoque innovador y liberar el potencial de combinar la tecnología con la experiencia en el comercio.
Integración de las API de los brókers con los Asesores Expertos usando MQL5 y Python
En este artículo, analizaremos la implementación de MQL5 en colaboración con Python para realizar operaciones relacionadas con los brókers. Imagina tener un asesor experto (Expert Advisor, EA) funcionando continuamente alojado en un VPS, ejecutando operaciones en tu nombre. En algún momento, la capacidad de la EA para gestionar fondos se vuelve primordial. Esto incluye operaciones como recargar su cuenta de trading e iniciar retiradas. En este debate, analizaremos las ventajas y la aplicación práctica de estas funciones, garantizando una integración perfecta de la gestión de fondos en su estrategia comercial. ¡Estén atentos!
Redes neuronales en el trading: Modelos bidimensionales del espacio de enlaces (Final)
Continuamos nuestra introducción al innovador framework Chimera, un modelo bidimensional de espacio de estados que utiliza tecnologías de redes neuronales para analizar series temporales multidimensionales. Este método proporciona una gran precisión de predicción con un bajo costo computacional.