Artículos con ejemplos de programación de robots comerciales en el lenguaje MQL5

icon

En el ámbito del trading automático los Asesores Expertos es la cima de la programación y objetivo deseable de cada desarrollador. Usted puede escribir su propio Asesor Experto utilizando los artículos de esta sección. Paso a paso los principiantes podrán pasar todas las fases de creación, depuración y simulación de los sistemas automáticos de trading.

Los artículos no sólo enseñarán a programar en el lenguaje MQL5, sino mostrarán cómo implementar cualquier idea y técnica comercial. Usted conocerá cómo programar el Trailing Stop, cómo realizar la gestión del capital, cómo obtener el valor del indicador y muchas cosas más.

Nuevo artículo
últimas | mejores
preview
Aproximación por fuerza bruta a la búsqueda de patrones (Parte VI): Optimización cíclica

Aproximación por fuerza bruta a la búsqueda de patrones (Parte VI): Optimización cíclica

En este artículo mostraremos la primera parte de las mejoras que nos permitieron no solo cerrar toda la cadena de automatización para comerciar en MetaTrader 4 y 5, sino también hacer algo mucho más interesante. A partir de ahora, esta solución nos permitirá automatizar completamente tanto el proceso de creación de asesores como el proceso de optimización, así como minimizar el gasto de recursos a la hora de encontrar configuraciones comerciales efectivas.
Interfaces gráficas X: Actualizaciones para la tabla dibujada y optimización del código (build 10)
Interfaces gráficas X: Actualizaciones para la tabla dibujada y optimización del código (build 10)

Interfaces gráficas X: Actualizaciones para la tabla dibujada y optimización del código (build 10)

Continuamos completar la tabla dibujada (CCanvasTable) con nuevas funcionalidades. Ahora la tabla va a contener las siguientes funciones: resalto de las filas al situar el cursor encima; posibilidad de agregar el array de imágenes para cada celda y el método para su conmutación; posibilidad de establecer y editar el texto de las cceldas durante la ejecución del programa, y muchas cosas más.
preview
Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.
preview
Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Redes neuronales: así de sencillo (Parte 73): AutoBots para predecir la evolución de los precios

Seguimos hablando de algoritmos para entrenar modelos de predicción de trayectorias. En este artículo nos familiarizaremos con un método llamado "AutoBots".
preview
Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Desarrollamos un Asesor Experto multidivisas (Parte 4): Órdenes pendientes virtuales y guardado del estado

Tras empezar a desarrollar un EA multidivisa, ya hemos obtenido algunos resultados y hemos conseguido realizar varias iteraciones de mejora del código. Sin embargo, nuestro EA fue incapaz de trabajar con órdenes pendientes y reanudar la operación después del reinicio del terminal. Añadamos estas características.
preview
Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)

Cómo construir un EA que opere automáticamente (Parte 07): Tipos de cuentas (II)

Aprenda a crear un EA que opere automáticamente de forma sencilla y segura. Uno siempre debe estar al tanto de lo que está haciendo un EA automatizado, y si se descarrila, eliminarlo lo más rápido posible del gráfico, para poner fin a lo que él estaba haciendo y evitar que las cosas se salgan de control.
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.
preview
Cómo construir un EA que opere automáticamente (Parte 10): Automatización (II)

Cómo construir un EA que opere automáticamente (Parte 10): Automatización (II)

La automatización no significa nada si no se puede controlar el horario. Ningún trabajador puede ser eficiente trabajando 24 horas al día. Sin embargo, muchos creen que un sistema automatizado debe trabajar 24 horas al día. Siempre es bueno tener formas de configurar una franja horaria para el Expert Advisor. En este artículo, vamos a discutir cómo agregar correctamente tal franja horaria.
preview
Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.
preview
Experimentos con redes neuronales (Parte 7): Transmitimos indicadores

Experimentos con redes neuronales (Parte 7): Transmitimos indicadores

Ejemplos de transmisión de indicadores a un perceptrón. En el artículo ofreceremos conceptos generales y presentaremos un asesor listo para usar muy simple, así como los resultados de su optimización y sus pruebas forward.
preview
Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos

Redes neuronales: así de sencillo (Parte 30): Algoritmos genéticos

En el artículo de hoy, hablaremos de un método de aprendizaje ligeramente distinto. Podríamos decir que lo hemos tomado de la teoría de la evolución de Darwin. Probablemente resulte menos controlable que los métodos anteriormente mencionados, pero también nos permite entrenar modelos indiferenciados.
preview
Cómo construir y optimizar un sistema de trading basado en la volatilidad (Chaikin Volatility - CHV)

Cómo construir y optimizar un sistema de trading basado en la volatilidad (Chaikin Volatility - CHV)

En este artículo, proporcionaremos otro indicador basado en la volatilidad llamado Chaikin Volatility. Entenderemos cómo construir un indicador personalizado después de identificar cómo se puede utilizar y construir. Compartiremos algunas estrategias sencillas que se pueden utilizar y luego las pondremos a prueba para entender cuál puede ser mejor.
preview
Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias

Redes neuronales en el trading: Modelo de doble atención para la previsión de tendencias

Continuamos la conversación sobre el uso de la representación lineal por partes de las series temporales iniciada en el artículo anterior. Y hoy hablaremos de la combinación de este método con otros enfoques del análisis de series temporales para mejorar la calidad de la previsión de la tendencia del movimiento de precios.
preview
Ejemplo de nuevo Indicador y LSTM condicional

Ejemplo de nuevo Indicador y LSTM condicional

Este artículo explora el desarrollo de un Asesor Experto (Expert Advisor, EA) para trading automatizado que combina el análisis técnico con predicciones de aprendizaje profundo.
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes

Reimaginando las estrategias clásicas (Parte III): Predicción de máximos crecientes y mínimos decrecientes

En esta serie de artículos, analizaremos empíricamente las estrategias comerciales clásicas para ver si podemos mejorarlas utilizando IA. En la discusión de hoy, intentamos predecir máximos más altos y mínimos más bajos utilizando el modelo de análisis discriminante lineal.
preview
Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Cómo crear un diario de operaciones con MetaTrader y Google Sheets

Crear un diario de operaciones con MetaTrader y Google Sheets! Aprenderá cómo sincronizar sus datos comerciales a través de HTTP POST y recuperarlos mediante solicitudes HTTP. Al final, tendrás un diario de operaciones que te ayudará a realizar un seguimiento de tus operaciones de manera eficaz y eficiente.
preview
Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Creamos un asesor multidivisa sencillo utilizando MQL5 (Parte 3): Prefijos/sufijos de símbolos y sesión comercial

Últimamente, he recibido comentarios de varios compañeros tráders sobre cómo usar el asesor multidivisa que estamos analizando con brókeres que utilizan prefijos y/o sufijos con nombres de símbolos, así como sobre la forma de implementar zonas horarias comerciales o sesiones comerciales en el asesor.
preview
Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)

Redes neuronales: así de sencillo (Parte 46): Aprendizaje por refuerzo dirigido a objetivos (GCRL)

En el artículo de hoy, nos familiarizaremos con otra tendencia en el campo del aprendizaje por refuerzo. Se denomina aprendizaje por refuerzo dirigido a objetivos (Goal-conditioned reinforcement learning, GCRL). En este enfoque, el agente se entrenará para alcanzar diferentes objetivos en determinados escenarios.
preview
Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Redes neuronales: así de sencillo (Parte 57): Stochastic Marginal Actor-Critic (SMAC)

Hoy le proponemos introducir un algoritmo bastante nuevo, el Stochastic Marginal Actor-Critic (SMAC), que permite la construcción de políticas de variable latente dentro de un marco de maximización de la entropía.
preview
Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

Estrategia de negociación de órdenes en cascada basada en cruces de EMA para MetaTrader 5

El artículo guía en la demostración de un algoritmo automatizado basado en cruces de EMA para MetaTrader 5. Información detallada sobre todos los aspectos de la demostración de un Asesor Experto en MQL5 y su prueba en MetaTrader 5, desde el análisis del comportamiento del rango de precios hasta la gestión de riesgos.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

En este artículo, vamos a hablar de la creación de las clases de los objetos herederos del indicador abstracto básico. Estos objetos nos permitirán crear los asesores expertos tipo indicador, recopilar y obtener estadísticas de valores de datos de diferentes indicadores y precios. Además, crearemos una colección de objetos de indicador de la cual se podrá obtener el acceso a las propiedades y datos de cada indicador creado en el programa.
preview
Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

Redes neuronales: así de sencillo (Parte 59): Dicotomía de control (DoC)

En el artículo anterior nos familiarizamos con el transformador de decisión. Sin embargo, el complejo entorno estocástico del mercado de divisas no nos permitió aprovechar plenamente el potencial del método presentado. Hoy veremos un algoritmo que tiene como objetivo mejorar el rendimiento de los algoritmos en entornos estocásticos.
preview
Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)

Redes neuronales: así de sencillo (Parte 88): Codificador de series temporales totalmente conectadas (TiDE)

El deseo de obtener las previsiones más exactas impulsa a los investigadores a aumentar la complejidad de los modelos de previsión. Lo que a su vez conlleva un aumento de los costes de entrenamiento y mantenimiento del modelo. Pero, ¿está esto siempre justificado? En el presente artículo, me propongo presentarles un algoritmo que explota la sencillez y rapidez de los modelos lineales y muestra resultados a la altura de los mejores con arquitecturas más complejas.
preview
Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

Desarrollamos un asesor experto multidivisa (Parte 14): Cambio de volumen adaptable en el gestor de riesgos

El gestor de riesgos que hemos desarrollado en los últimos artículos solo contiene funciones básicas. Hoy trataremos de analizar sus posibles formas de desarrollo, lo que nos permitirá aumentar los resultados comerciales sin interferir con la lógica de las estrategias de negociación.
preview
Análisis del sentimiento en Twitter con sockets

Análisis del sentimiento en Twitter con sockets

Este innovador bot comercial integra MetaTrader 5 con Python para aprovechar el análisis del sentimiento de las redes sociales en tiempo real para tomar decisiones comerciales automatizadas. Mediante el análisis del sentimiento en Twitter relacionado con instrumentos financieros específicos, el bot traduce las tendencias de las redes sociales en señales de negociación procesables. Utiliza una arquitectura cliente-servidor con comunicación por socket, lo que permite una interacción perfecta entre las capacidades de negociación de MT5 y la potencia de procesamiento de datos de Python.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Desarrollamos un Asesor Experto multidivisas (Parte 2): Transición a posiciones virtuales de estrategias comerciales

Hoy continuaremos con el desarrollo de un asesor multidivisa con varias estrategias funcionando en paralelo. Intentaremos transferir todo el trabajo relacionado con la apertura de posiciones de mercado desde el nivel de las estrategias al nivel de un experto que gestiona estas. Las propias estrategias solo negociarán virtualmente, sin abrir posiciones de mercado.
preview
Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

Redes neuronales: así de sencillo (Parte 48): Métodos para reducir la sobreestimación de los valores de la función Q

En el artículo anterior, presentamos el método DDPG, que nos permite entrenar modelos en un espacio de acción continuo. Sin embargo, al igual que otros métodos de aprendizaje Q, el DDPG tiende a sobreestimar los valores de la función Q. Con frecuencia, este problema provoca que entrenemos los agentes con una estrategia subóptima. En el presente artículo, analizaremos algunos enfoques para superar el problema mencionado.
preview
Preparación de indicadores de símbolo/periodo múltiple

Preparación de indicadores de símbolo/periodo múltiple

En este artículo analizaremos los principios de la creación de los indicadores de símbolo/periodo múltiple y la obtención de datos de ellos en asesores e indicadores. Asimismo, veremos los principales matices de uso de los indicadores múltiples en asesores e indicadores, y su representación a través de los búferes del indicador personalizado.
preview
Automatización de estrategias de trading en MQL5 (Parte 5): Desarrollo de la estrategia Adaptive Crossover RSI Trading Suite

Automatización de estrategias de trading en MQL5 (Parte 5): Desarrollo de la estrategia Adaptive Crossover RSI Trading Suite

En este artículo, desarrollamos el sistema Adaptive Crossover RSI Trading Suite, que utiliza cruces de medias móviles de 14 y 50 períodos como señales, confirmadas por un filtro RSI de 14 períodos. El sistema incluye un filtro de días de negociación, flechas de señal con anotaciones y un panel de control en tiempo real para la supervisión. Este enfoque garantiza precisión y adaptabilidad en el comercio automatizado.
preview
Envolviendo modelos ONNX en clases

Envolviendo modelos ONNX en clases

La programación orientada a objetos permite crear un código más compacto, fácil de leer y modificar. Le presentamos un ejemplo para tres modelos ONNX.
preview
Redes neuronales en el trading: Transformador contrastivo de patrones

Redes neuronales en el trading: Transformador contrastivo de patrones

El transformador contrastivo de patrones analiza la situación del mercado tanto a nivel de velas individuales como de patrones completos, lo cual contribuye a mejorar la calidad de modelado de las tendencias del mercado, mientras que el uso del aprendizaje por contraste para emparejar las representaciones de velas y patrones conduce a la autorregulación y a la mejora de la precisión de la predicción.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

Desarrollamos un Asesor Experto multidivisas (Parte 5): Tamaños de posición variables

En las partes anteriores, el Asesor Experto (EA) en desarrollo sólo podía utilizar un tamaño de posición fijo para operar. Esto es aceptable para las pruebas, pero no es aconsejable cuando se opera en una cuenta real. Hagamos posible el comercio utilizando tamaños de posición variables.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

En línea con nuestra visión de simplificar la acción del precio, nos complace presentar otra herramienta que puede mejorar significativamente su análisis de mercado y ayudarle a tomar decisiones bien informadas. Esta herramienta muestra indicadores técnicos clave, como los precios del día anterior, los niveles significativos de soporte y resistencia, y el volumen de operaciones, al tiempo que genera automáticamente señales visuales en el gráfico.
preview
Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

Previsión y apertura de órdenes basadas en aprendizaje profundo (Deep Learning) con el paquete Python MetaTrader 5 y el archivo modelo ONNX

El proyecto consiste en utilizar Python para realizar previsiones basadas en el aprendizaje profundo en los mercados financieros. Exploraremos los entresijos de la comprobación del rendimiento del modelo utilizando métricas clave como el error medio absoluto (MAE, Mean Absolute Error), el error medio cuadrático (MSE, Mean Squared Error) y R-cuadrado (R2), y aprenderemos a envolverlo todo en un ejecutable. También haremos un fichero modelo ONNX con su EA.
preview
Desarrollando un EA comercial desde cero (Parte 19): Un nuevo sistema de órdenes (II)

Desarrollando un EA comercial desde cero (Parte 19): Un nuevo sistema de órdenes (II)

Aquí vamos a desarrollar un sistema gráfico de órdenes, del tipo «vea lo que está pasando». Cabe decir que no partiremos de cero, sino que modificaremos el sistema existente añadiendo aún más objetos y eventos al gráfico del activo que estamos negociando.
preview
Redes neuronales: así de sencillo (Parte 47): Espacio continuo de acciones

Redes neuronales: así de sencillo (Parte 47): Espacio continuo de acciones

En este artículo ampliamos el abanico de tareas de nuestro agente. El proceso de entrenamiento incluirá algunos aspectos de la gestión de capital y del riesgo que forma parte integral de cualquier estrategia comercial.
preview
Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

Redes neuronales: así de sencillo (Parte 45): Entrenando habilidades de exploración de estados

El entrenamiento de habilidades útiles sin una función de recompensa explícita es uno de los principales desafíos del aprendizaje por refuerzo jerárquico. Ya nos hemos familiarizado antes con dos algoritmos para resolver este problema, pero el tema de la exploración del entorno sigue abierto. En este artículo, veremos un enfoque distinto en el entrenamiento de habilidades, cuyo uso dependerá directamente del estado actual del sistema.
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado
Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado

Trabajando con los precios en la biblioteca DoEasy (Parte 63): Profundidad del mercado, clase de orden abstracta de la Profundidad del mercado

En el presente artículo, empezaremos a desarrollar la funcionalidad para trabajar con la Profundidad del mercado. Crearemos la clase del objeto de una orden abstracta de la Profundidad del mercado y sus clases herederas.
preview
Integración de modelos ML con el simulador de estrategias (Conclusión): Implementación de un modelo de regresión para la predicción de precios

Integración de modelos ML con el simulador de estrategias (Conclusión): Implementación de un modelo de regresión para la predicción de precios

Este artículo describe la implementación de un modelo de regresión de árboles de decisión para predecir precios de activos financieros. Se realizaron etapas de preparación de datos, entrenamiento y evaluación del modelo, con ajustes y optimizaciones. Sin embargo, es importante destacar que el modelo es solo un estudio y no debe ser usado en operaciones reales.