Múltiples indicadores en un gráfico (Parte 06): Convirtamos el MetaTrader 5 en un sistema RAD (II)
En el artículo anterior mostré cómo crear un Chart Trade utilizando los objetos de MetaTrader 5, por medio de la conversión de la plataforma en un sistema RAD. El sistema funciona muy bien, y creo que muchos han pensado en crear una librería para tener cada vez más funcionalidades en el sistema propuesto, y así lograr desarrollar un EA que sea más intuitivo a la vez que tenga una interfaz más agradable y sencilla de utilizar.
Gestión de Riesgo (Parte 5): Integrando la Gestión de Riesgo en un Asesor Experto
En este artículo implemento la gestión de riesgo desarrollada en publicaciones anteriores e incorporo el indicador de order blocks presentado en otros artículos. Además, realizaré un backtest para comparar los resultados con la aplicación de la gestión de riesgo y evaluaré el impacto del riesgo dinámico.
Trabajando con los precios en la biblioteca DoEasy (Parte 60): Lista de serie de datos de tick del símbolo
En este artículo, vamos a crear una lista para almacenar los datos de tick del símbolo único, después, verificaremos su creación y obtención de los datos requeridos en el Asesor Experto. Dichas listas —siendo aplicada cada una de ellas para cada símbolo usado— van a componer luego la colección de datos de tick.
Redes neuronales: así de sencillo (Parte 62): Uso del transformador de decisiones en modelos jerárquicos
En artículos recientes, hemos visto varios usos del método Decision Transformer, que permite analizar no solo el estado actual, sino también la trayectoria de los estados anteriores y las acciones realizadas en ellos. En este artículo, veremos una variante del uso de este método en modelos jerárquicos.
Redes neuronales: así de sencillo (Parte 67): Utilizamos la experiencia adquirida para afrontar nuevos retos
En este artículo, seguiremos hablando de los métodos de recopilación de datos en una muestra de entrenamiento. Obviamente, en el proceso de entrenamiento será necesaria una interacción constante con el entorno, aunque con frecuencia se dan situaciones diferentes.
Implementación de un algoritmo de trading de negociación rápida utilizando SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) en MQL5
En este artículo, desarrollamos un Asesor Experto de trading de ejecución rápida en MQL5, aprovechando los indicadores SAR Parabólico (Stop and Reverse, SAR) y Media Móvil Simple (Simple Moving Average, SMA) para crear una estrategia de trading reactiva y eficiente. Detallamos la implementación de la estrategia, incluyendo el uso de los indicadores, la generación de señales y el proceso de prueba y optimización.
Redes neuronales: así de sencillo (Parte 24): Mejorando la herramienta para el Transfer Learning
En el último artículo, creamos una herramienta capaz de crear y editar arquitecturas de redes neuronales. Hoy querríamos proponerles continuar con el desarrollo de esta herramienta, para lograr que resulte más fácil de usar. En cierto modo, esto se aleja un poco de nuestro tema, pero estará de acuerdo con que la organización del espacio de trabajo desempeña un papel importante en el resultado final.
Redes neuronales: así de sencillo (Parte 22): Aprendizaje no supervisado de modelos recurrentes
Continuamos analizando los algoritmos de aprendizaje no supervisado. Hoy hablaremos sobre el uso de autocodificadores en el entrenamiento de modelos recurrentes.
Redes neuronales: así de sencillo (Parte 23): Creamos una herramienta para el Transfer Learning
En esta serie de artículos, hemos mencionado el Aprendizaje por Transferencia más de una vez, pero hasta ahora no había sido más que una mención. Le propongo rellenar este vacío y analizar más de cerca el Aprendizaje por Transferencia.
Desarrollando un EA comercial desde cero (Parte 13): Times And Trade (II)
Hoy vamos a construir la segunda parte del sistema Times & Trade para analizar el mercado. En el artículo anterior Times & Trade ( I ) presenté un sistema alternativo para organizar un gráfico de manera que tengamos un indicador que nos permita interpretar las operaciones que se han ejecutado en el mercado lo más rápido posible.
Teoría de categorías en MQL5 (Parte 11): Grafos
El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Aquí veremos cómo podemos integrar la teoría de grafos con los monoides y otras estructuras de datos al desarrollar una estrategia de cierre del sistema comercial.
Multibot en MetaTrader (Parte II): Plantilla dinámica mejorada
Desarrollando el tema del artículo anterior sobre el multibot, hemos decidido crear una plantilla más flexible y funcional, que tenga grandes posibilidades, y que se pueda utilizar eficazmente en freelance, además de como base para desarrollar asesores de divisa y periodo múltiple con posibilidad de integración con soluciones externas.
Análisis de sentimientos y aprendizaje profundo para operar con EA y backtesting con Python
En este artículo, presentaremos un análisis de sentimiento y los modelos ONNX con Python para ser utilizados en un asesor experto. Un script ejecuta un modelo ONNX entrenado a partir de TensorFlow para predicciones de aprendizaje profundo, mientras que otro obtiene titulares de noticias y cuantifica el sentimiento utilizando IA.
Redes neuronales: así de sencillo (Parte 58): Transformador de decisión (Decision Transformer-DT)
Continuamos nuestro análisis de los métodos de aprendizaje por refuerzo. Y en el presente artículo, presentaremos un algoritmo ligeramente distinto que considera la política del Agente en un paradigma de construcción de secuencias de acciones.
Estimamos la rentabilidad futura usando intervalos de confianza
En este artículo, nos adentraremos en la aplicación de técnicas de bootstrapping como forma de evaluar la rentabilidad futura de una estrategia automatizada.
Creación de un EA limitador de reducción diaria en MQL5
El artículo analiza, desde una perspectiva detallada, cómo implementar la creación de un Asesor Experto (EA) basado en el algoritmo comercial. Esto ayuda a automatizar el sistema en MQL5 y tomar el control de la reducción diaria.
Redes neuronales: así de sencillo (Parte 87): Segmentación de series temporales
La previsión juega un papel esencial en el análisis de series temporales. En este nuevo artículo, hablaremos de las ventajas de la segmentación de series temporales.
Filtrado y extracción de características en el dominio de la frecuencia
En este artículo, analizaremos la aplicación de filtros digitales a series temporales representadas en el dominio de la frecuencia con el fin de extraer características únicas que puedan resultar útiles para los modelos de predicción.
Experimentos con redes neuronales (Parte 4): Patrones
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
Redes neuronales: así de sencillo (Parte 36): Modelos relacionales de aprendizaje por refuerzo (Relational Reinforcement Learning)
En los modelos de aprendizaje por refuerzo analizados anteriormente, usamos varias opciones de redes convolucionales que pueden identificar varios objetos en los datos originales. La principal ventaja de las redes convolucionales es su capacidad de identificar objetos independientemente de la ubicación de estos. Al mismo tiempo, las redes convolucionales no siempre son capaces de hacer frente a diversas deformaciones de los objetos y al ruido. Pero estos problemas pueden resolverse usando el modelo relacional.
Ejemplo de toma de beneficios optimizada automáticamente y parámetros de indicadores con SMA y EMA
Este artículo presenta un asesor experto sofisticado para el trading de divisas, que combina el aprendizaje automático con el análisis técnico. Se centra en la negociación de acciones de Apple, presentando optimización adaptativa, gestión de riesgos y múltiples estrategias. Las pruebas retrospectivas muestran resultados prometedores con una alta rentabilidad, pero también caídas significativas, lo que indica potencial para un mayor refinamiento.
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados
La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
Redes neuronales en el trading: Modelos del espacio de estados
Una gran cantidad de los modelos que hemos revisado hasta ahora se basan en la arquitectura del Transformer. No obstante, pueden resultar ineficientes al trabajar con secuencias largas. En este artículo le propongo familiarizarse con una rama alternativa de pronóstico de series temporales basada en modelos del espacio de estados.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 56): Objeto del indicador personalizado, obtención de datos de parte de los objetos de indicador en la colección
En el presente artículo, vamos a considerar la creación de un objeto del indicador personalizado para usarlo en los asesores expertos. Mejoraremos un poco las clases de la biblioteca y escribiremos los métodos para obtener los datos de parte de los objetos de indicador en los expertos.
Perceptrón multicapa y algoritmo de retropropagación (Parte 3): Integración con el simulador de estrategias - Visión general (I)
El perceptrón multicapa es una evolución del perceptrón simple, capaz de resolver problemas separables no linealmente. Junto con el algoritmo de retropropagación, es posible entrenar eficientemente esta red neuronal. En la tercera parte de la serie sobre el perceptrón multicapa y la retropropagación, mostraremos cómo integrar esta técnica con el simulador de estrategias. Esta integración permitirá utilizar análisis de datos complejos y tomar mejores decisiones para optimizar las estrategias de negociación. En este resumen, analizaremos las ventajas y los retos de la aplicación de esta técnica.
Redes neuronales: así de sencillo (Parte 43): Dominando las habilidades sin función de recompensa
El problema del aprendizaje por refuerzo reside en la necesidad de definir una función de recompensa, que puede ser compleja o difícil de formalizar. Para resolver esto, se están estudiando enfoques basados en la variedad de acciones y la exploración del entorno que permiten aprender habilidades sin una función de recompensa explícita.
Creación de una interfaz gráfica de usuario interactiva en MQL5 (Parte 2): Añadir controles y capacidad de respuesta
Mejorar el panel GUI de MQL5 con funciones dinámicas puede mejorar significativamente la experiencia comercial de los usuarios. Al incorporar elementos interactivos, efectos de desplazamiento y actualizaciones de datos en tiempo real, el panel se convierte en una herramienta poderosa para los traders modernos.
Redes neuronales: así de sencillo (Parte 89): Transformador de descomposición de la frecuencia de señal (FEDformer)
Todos los modelos de los que hemos hablado anteriormente analizan el estado del entorno como una secuencia temporal. Sin embargo, las propias series temporales también pueden representarse como características de frecuencia. En este artículo, presentaremos un algoritmo que utiliza las características de frecuencia de una secuencia temporal para predecir los estados futuros.
Cómo implementar la optimización automática en los asesores expertos de MQL5
Guía paso a paso para la optimización automática en MQL5 para Asesores Expertos. Cubriremos la lógica de optimización robusta, las mejores prácticas para la selección de parámetros y cómo reconstruir estrategias con pruebas retrospectivas. Además, se discutirán métodos de nivel superior, como la optimización del avance, para mejorar su enfoque comercial.
Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios
En este artículo analizaremos el método de componentes principales, una técnica de reducción de la dimensionalidad para el análisis de datos, y cómo podemos aplicar este utilizando valores propios y vectores. Como siempre, intentaremos desarrollar un prototipo de la clase de señales del asesor experto que se pueda utilizar en el Wizard MQL5.
Experimentos con redes neuronales (Parte 5): Normalización de parámetros de entrada para su transmisión a una red neuronal
Las redes neuronales lo son todo. Vamos a comprobar en la práctica si esto es así. MetaTrader 5 como herramienta autosuficiente para el uso de redes neuronales en el trading. Una explicación sencilla.
Aprendizaje automático y Data Science (Parte 22): Aprovechar las redes neuronales de autocodificadores para realizar operaciones más inteligentes pasando del ruido a la señal
En el vertiginoso mundo de los mercados financieros, separar las señales significativas del ruido es crucial para operar con éxito. Al emplear sofisticadas arquitecturas de redes neuronales, los autocodificadores destacan a la hora de descubrir patrones ocultos en los datos de mercado, transformando datos ruidosos en información práctica. En este artículo, exploramos cómo los autocodificadores están revolucionando las prácticas de negociación, ofreciendo a los operadores una poderosa herramienta para mejorar la toma de decisiones y obtener una ventaja competitiva en los dinámicos mercados actuales.
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 5): Envío de comandos desde Telegram a MQL5 y recepción de respuestas en tiempo real
En este artículo, creamos varias clases para facilitar la comunicación en tiempo real entre MQL5 y Telegram. Nos centramos en recuperar comandos de Telegram, decodificarlos e interpretarlos y enviar respuestas apropiadas. Al final, nos aseguramos de que estas interacciones se prueben eficazmente y estén operativas dentro del entorno comercial.
Redes neuronales: así de sencillo (Parte 44): Estudiamos las habilidades de forma dinámica
En el artículo anterior, nos familiarizamos con el método DIAYN, que ofrece un algoritmo para el aprendizaje de diversas habilidades. El uso de las habilidades aprendidas puede aprovecharse en diversas tareas, pero estas habilidades pueden resultar bastante impredecibles, lo cual puede dificultar su uso. En este artículo, analizaremos un algoritmo para el aprendizaje de habilidades predecibles.
El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5
Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.
Trading algorítmico basado en patrones de reversión 3D
Hoy descubriremos al lector el nuevo mundo del trading automatizado con barras 3D. ¿Qué aspecto tiene un robot comercial basado en barras de precios multidimensionales, y pueden los clústeres "amarillos" de barras tridimensionales predecir los cambios de tendencia? ¿Cómo es el trading en múltiples dimensiones?
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador
En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
Redes neuronales: así de sencillo (Parte 66): Problemática de la exploración en el entrenamiento offline
El entrenamiento offline del modelo se realiza sobre los datos de una muestra de entrenamiento previamente preparada. Esto nos ofrecerá una serie de ventajas, pero la información sobre el entorno estará muy comprimida con respecto al tamaño de la muestra de entrenamiento, lo que, a su vez, limitará el alcance del estudio. En este artículo, querríamos familiarizarnos con un método que permite llenar la muestra de entrenamiento con los datos más diversos posibles.
Creación de un modelo de restricción de tendencia de velas (Parte 9): Asesor Experto de múltiples estrategias (III)
¡Bienvenidos a la tercera entrega de nuestra serie sobre tendencias! Hoy profundizaremos en el uso de la divergencia como estrategia para identificar puntos de entrada óptimos dentro de la tendencia diaria predominante. También presentaremos un mecanismo de bloqueo de ganancias personalizado, similar a un stop-loss dinámico, pero con mejoras únicas. Además, actualizaremos el asesor experto Trend Constraint a una versión más avanzada, incorporando una nueva condición de ejecución comercial para complementar las existentes. A medida que avanzamos, continuaremos explorando la aplicación práctica de MQL5 en el desarrollo algorítmico, brindándole información más detallada y técnicas prácticas.
Características del Wizard MQL5 que debe conocer (Parte 6): Transformada de Fourier
La transformada de Fourier, introducida por Joseph Fourier, es un medio para descomponer puntos de datos de ondas complejos en componentes de ondas simples. Esta característica puede resultar útil para los tráders, así que hablaremos de ella en este artículo.