Artículos con ejemplos de programación de robots comerciales en el lenguaje MQL5

icon

En el ámbito del trading automático los Asesores Expertos es la cima de la programación y objetivo deseable de cada desarrollador. Usted puede escribir su propio Asesor Experto utilizando los artículos de esta sección. Paso a paso los principiantes podrán pasar todas las fases de creación, depuración y simulación de los sistemas automáticos de trading.

Los artículos no sólo enseñarán a programar en el lenguaje MQL5, sino mostrarán cómo implementar cualquier idea y técnica comercial. Usted conocerá cómo programar el Trailing Stop, cómo realizar la gestión del capital, cómo obtener el valor del indicador y muchas cosas más.

Nuevo artículo
últimas | mejores
preview
Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)

Redes neuronales: así de sencillo (Parte 54): Usamos un codificador aleatorio para una exploración eficiente (RE3)

Siempre que analizamos métodos de aprendizaje por refuerzo, nos enfrentamos al problema de explorar eficientemente el entorno. Con frecuencia, la resolución de este problema hace que el algoritmo se complique, llevándonos al entrenamiento de modelos adicionales. En este artículo veremos un enfoque alternativo para resolver el presente problema.
preview
Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)

Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)

Uno de los principales retos del aprendizaje por refuerzo es la exploración del entorno. Con anterioridad, hemos aprendido un método de exploración basado en la curiosidad interior. Hoy queremos examinar otro algoritmo: la exploración mediante el desacuerdo.
preview
Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración

Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración

Continuamos con el tema de la exploración del entorno en los modelos de aprendizaje por refuerzo. En este artículo, analizaremos otro algoritmo: Go-Explore, que permite explorar eficazmente el entorno en la etapa de entrenamiento del modelo.
preview
Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline

Redes neuronales: así de sencillo (Parte 61): El problema del optimismo en el aprendizaje por refuerzo offline

Durante el aprendizaje offline, optimizamos la política del Agente usando los datos de la muestra de entrenamiento. La estrategia resultante proporciona al Agente confianza en sus acciones. No obstante, dicho optimismo no siempre está justificado y puede acarrear mayores riesgos durante el funcionamiento del modelo. Hoy veremos un método para reducir estos riesgos.
preview
Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

Teoría de Categorías en MQL5 (Parte 10): Grupos monoidales

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. Hoy analizaremos los grupos monoidales como un medio que normaliza conjuntos de monoides y los hace más comparables entre una gama más amplia de conjuntos de monoides y tipos de datos.
preview
Redes neuronales: así de sencillo (Parte 50): Soft Actor-Critic (optimización de modelos)

Redes neuronales: así de sencillo (Parte 50): Soft Actor-Critic (optimización de modelos)

En el artículo anterior, implementamos el algoritmo Soft Actor-Critic (SAC), pero no pudimos entrenar un modelo rentable. En esta ocasión, optimizaremos el modelo creado previamente para obtener los resultados deseados en su rendimiento.
preview
Redes neuronales: así de sencillo (Parte 56): Utilizamos la norma nuclear para incentivar la exploración

Redes neuronales: así de sencillo (Parte 56): Utilizamos la norma nuclear para incentivar la exploración

La exploración del entorno en tareas de aprendizaje por refuerzo es un problema relevante. Con anterioridad, ya hemos analizado algunos de estos enfoques. Hoy le propongo introducir otro método basado en la maximización de la norma nuclear, que permite a los agentes identificar estados del entorno con un alto grado de novedad y diversidad.
preview
Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Desarrollamos un Asesor Experto multidivisas (Parte 3): Revisión de la arquitectura

Ya hemos avanzado bastante en el desarrollo del asesor multidivisa con varias estrategias funcionando en paralelo. Basándonos en nuestra experiencia, revisaremos la arquitectura de nuestra solución y trataremos de mejorarla antes de avanzar demasiado.
preview
Desarrollo de un factor de calidad para los EAs

Desarrollo de un factor de calidad para los EAs

En este artículo, te explicaremos cómo desarrollar un factor de calidad que tu Asesor Experto (EA) pueda mostrar en el simulador de estrategias. Te presentaremos dos formas de cálculo muy conocidas (Van Tharp y Sunny Harris).
preview
Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Ejemplo de Análisis de Redes de Causalidad (CNA), Control Óptimo de Modelos Estocásticos (SMOC) y la Teoría de Juegos de Nash con Aprendizaje Profundo (Deep Learning)

Agregaremos Deep Learning a esos tres ejemplos que se publicaron en artículos anteriores y compararemos los resultados con los anteriores. El objetivo es aprender cómo agregar DL (Deep Learning) a otro EA.
preview
Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Redes neuronales en el trading: Modelos de difusión direccional (DDM)

Hoy proponemos al lector familiarizarse con los modelos de difusión direccional que explotan el ruido anisotrópico y direccional dependiente de los datos durante la difusión directa para capturar representaciones gráficas significativas.
preview
Redes neuronales: así de sencillo (Parte 52): Exploración con optimismo y corrección de la distribución

Redes neuronales: así de sencillo (Parte 52): Exploración con optimismo y corrección de la distribución

A medida que el modelo se entrena con el búfer de reproducción de experiencias, la política actual del Actor se aleja cada vez más de los ejemplos almacenados, lo cual reduce la eficacia del entrenamiento del modelo en general. En este artículo, analizaremos un algoritmo para mejorar la eficiencia del uso de las muestras en los algoritmos de aprendizaje por refuerzo.
preview
Operar con noticias de manera sencilla (Parte 3): Ejecución de operaciones

Operar con noticias de manera sencilla (Parte 3): Ejecución de operaciones

En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.
preview
Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Redes neuronales en el trading: Modelos "ligeros" de pronóstico de series temporales

Los modelos ligeros de pronóstico de series temporales logran un alto rendimiento utilizando un número mínimo de parámetros, lo que, a su vez, reduce el consumo de recursos computacionales y agiliza la toma de decisiones. De este modo consiguen una calidad de previsión comparable a la de modelos más complejos.
preview
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos

El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
preview
Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Redes neuronales en el trading: Transformador vectorial jerárquico (Final)

Continuamos nuestro análisis del método del Transformador Vectorial Jerárquico. En este artículo finalizaremos la construcción del modelo. También lo entrenaremos y probaremos con datos históricos reales.
preview
Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

Redes neuronales en el trading: Inyección de información global en canales independientes (InjectTST)

La mayoría de los métodos modernos de pronóstico de series temporales multimodales utilizan el enfoque de canales independientes. Esto ignora la dependencia natural de los diferentes canales de la misma serie temporal. Un uso coherente de ambos enfoques (canales independientes y mixtos) es la clave para mejorar el rendimiento de los modelos.
preview
Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

Creación de un asesor experto integrado de MQL5 y Telegram (Parte 4): Modular las funciones del código para mejorar su reutilización

En este artículo, refactorizamos el código existente utilizado para enviar mensajes y capturas de pantalla de MQL5 a Telegram organizándolo en funciones modulares y reutilizables. Esto agilizará el proceso, permitiendo una ejecución más eficiente y una gestión del código más sencilla en múltiples instancias.
preview
Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

Redes neuronales: así de sencillo (Parte 60): Online Decision Transformer (ODT)

En los 2 últimos artículos nos hemos centrado en el método Decision Transformer, que modela las secuencias de acciones en el contexto de un modelo autorregresivo de recompensas deseadas. En el artículo de hoy, analizaremos otro algoritmo para optimizar este método.
preview
Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Redes neuronales: así de sencillo (Parte 75): Mejora del rendimiento de los modelos de predicción de trayectorias

Los modelos que creamos son cada vez más grandes y complejos. Esto aumenta los costes no sólo de su formación, sino también de su funcionamiento. Sin embargo, el tiempo necesario para tomar una decisión suele ser crítico. A este respecto, consideremos los métodos para optimizar el rendimiento del modelo sin pérdida de calidad.
preview
Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

Redes neuronales: así de sencillo (Parte 37): Atención dispersa (Sparse Attention)

En el artículo anterior, analizamos los modelos relacionales que utilizan mecanismos de atención en su arquitectura. Una de las características de dichos modelos es su mayor uso de recursos informáticos. Este artículo propondrá uno de los posibles mecanismos para reducir el número de operaciones computacionales dentro del bloque Self-Attention o de auto-atención, lo cual aumentará el rendimiento del modelo en su conjunto.
preview
Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

Operar con noticias de manera sencilla (Parte 2): Gestión de riesgos

En este artículo, se introducirá la herencia en nuestro código anterior. Se implementará un nuevo diseño de base de datos para brindar eficiencia. Además, se creará una clase de gestión de riesgos para abordar los cálculos de volumen.
preview
Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Redes neuronales: así de sencillo (Parte 64): Método de clonación conductual ponderada conservadora (CWBC)

Como resultado de las pruebas realizadas en artículos anteriores, hemos concluido que la optimalidad de la estrategia entrenada depende en gran medida de la muestra de entrenamiento utilizada. En este artículo, nos familiarizaremos con un método bastante sencillo y eficaz para seleccionar trayectorias para el entrenamiento de modelos.
preview
Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Ejemplo de análisis de redes de causalidad (Causality Network Analysis, CNA) y modelo de autoregresión vectorial para la predicción de eventos de mercado

Este artículo presenta una guía completa para implementar un sistema comercial sofisticado utilizando análisis de red de causalidad (CNA) y autorregresión vectorial (Vector autoregression, VAR) en MQL5. Abarca los fundamentos teóricos de estos métodos, ofrece explicaciones detalladas de las funciones clave del algoritmo de negociación e incluye código de ejemplo para su aplicación.
preview
Desarrollo de asesores expertos autooptimizables en MQL5

Desarrollo de asesores expertos autooptimizables en MQL5

Construya asesores expertos que miren hacia delante y se ajusten a cualquier mercado.
preview
Redes neuronales: así de sencillo (Parte 42): Procrastinación del modelo, causas y métodos de solución

Redes neuronales: así de sencillo (Parte 42): Procrastinación del modelo, causas y métodos de solución

La procrastinación del modelo en el contexto del aprendizaje por refuerzo puede deberse a varias razones, y para solucionar este problema deberemos tomar las medidas pertinentes. El artículo analiza algunas de las posibles causas de la procrastinación del modelo y los métodos para superarlas.
preview
Teoría de categorías en MQL5 (Parte 12): Orden

Teoría de categorías en MQL5 (Parte 12): Orden

El artículo forma parte de una serie sobre la implementación de grafos utilizando la teoría de categorías en MQL5 y está dedicado a la relación de orden (Order Theory). Hoy analizaremos dos tipos básicos de orden y exploraremos cómo los conceptos de relación de orden pueden respaldar conjuntos monoides en las decisiones comerciales.
preview
Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias puede ser complicado y abrumador, en este artículo repasaremos los pasos para obtener datos de noticias. Además, conoceremos el calendario económico de MQL5 y lo que ofrece.
preview
Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Introducción a MQL5 (Parte 6): Guía para principiantes sobre las funciones de matriz en MQL5 (II)

Embárquese en la siguiente fase de nuestro viaje MQL5. En este artículo para principiantes analizaremos el resto de funciones de la matriz y desmitificaremos conceptos complejos para que pueda elaborar estrategias de negociación eficaces. Hablaremos de ArrayPrint, ArrayInsert, ArraySize, ArrayRange, ArrarRemove, ArraySwap, ArrayReverse y ArraySort. Aumente su experiencia en negociación algorítmica con estas funciones de matriz esenciales. ¡Únase a nosotros en el camino hacia el dominio de MQL5!
preview
Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)

Redes neuronales: así de sencillo (Parte 51): Actor-crítico conductual (BAC)

Los dos últimos artículos han considerado el algoritmo SAC (Soft Actor-Critic), que incorpora la regularización de la entropía en la función de la recompensa. Este enfoque equilibra la exploración del entorno y la explotación del modelo, pero solo es aplicable a modelos estocásticos. El presente material analizará un enfoque alternativo aplicable tanto a modelos estocásticos como deterministas.
preview
Redes neuronales: así de sencillo (Parte 86): Transformador en U

Redes neuronales: así de sencillo (Parte 86): Transformador en U

Continuamos nuestro repaso a los algoritmos de previsión de series temporales. En este artículo nos familiarizaremos con los métodos del Transformador en U.
preview
Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

Redes neuronales: así de sencillo (Parte 77): Transformador de covarianza cruzada (XCiT)

En nuestros modelos, a menudo utilizamos varios algoritmos de atención. Y, probablemente, lo más frecuente es utilizar transformadores. Su principal desventaja es la necesidad de recursos. En este artículo, estudiaremos un nuevo algoritmo que puede ayudar a reducir los costes informáticos sin perder calidad.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
preview
Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

Redes neuronales en el trading: Análisis de la situación del mercado usando el Transformador de patrones

A la hora de analizar la situación del mercado con nuestros modelos, el elemento clave es la vela. No obstante, sabemos desde hace tiempo que las velas pueden ayudar a predecir los movimientos futuros de los precios. Y en este artículo aprenderemos un método que nos permitirá integrar ambos enfoques.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (I)

Este debate profundiza en los retos que se plantean al trabajar con grandes bases de código. Exploraremos las mejores prácticas para la organización del código en MQL5 e implementaremos un enfoque práctico para mejorar la legibilidad y la escalabilidad del código fuente de nuestro Panel de administración de operaciones. Además, nuestro objetivo es desarrollar componentes de código reutilizables que puedan beneficiar a otros desarrolladores en el desarrollo de sus algoritmos. Sigue leyendo y únete a la conversación.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte III): Mejora de la interfaz gráfica de usuario con estilización visual (I)

Creación de un Panel de administración de operaciones en MQL5 (Parte III): Mejora de la interfaz gráfica de usuario con estilización visual (I)

En este artículo, nos centraremos en el estilo visual de la interfaz gráfica de usuario (GUI) de nuestro Panel de Administrador de Trading utilizando MQL5. Exploraremos diversas técnicas y funciones disponibles en MQL5 que permiten personalizar y optimizar la interfaz, garantizando que satisfaga las necesidades de los operadores al tiempo que mantiene una estética atractiva.
preview
Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Este artículo analizará el uso del algoritmo Go-Explore durante un largo periodo de aprendizaje, ya que la estrategia de elección aleatoria puede no conducir a una pasada rentable a medida que aumenta el tiempo de entrenamiento.
preview
Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 3): Estrategias dinámicas de seguimiento de tendencias y reversión a la media

Desarrollo de asesores expertos autooptimizables en MQL5 (Parte 3): Estrategias dinámicas de seguimiento de tendencias y reversión a la media

Los mercados financieros suelen clasificarse en dos tipos: los que se mueven dentro de un rango y los que siguen una tendencia. Esta visión estática del mercado puede facilitarnos las operaciones a corto plazo. Sin embargo, está desconectado de la realidad del mercado. En este artículo, buscamos comprender mejor cómo se mueven exactamente los mercados financieros entre estos dos modos posibles y cómo podemos utilizar nuestra nueva comprensión del comportamiento del mercado para ganar confianza en nuestras estrategias de negociación algorítmica.
preview
Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

Redes neuronales: así de sencillo (Parte 71): Previsión de estados futuros basada en objetivos (GCPC)

En trabajos anteriores, hemos introducido el método del Decision Transformer y varios algoritmos derivados de él. Asimismo, hemos experimentado con distintos métodos de fijación de objetivos. Durante los experimentos, hemos trabajado con distintas formas de fijar objetivos, pero el aprendizaje de la trayectoria ya recorrida por parte del modelo siempre quedaba fuera de nuestra atención. En este artículo, queremos presentar un método que llenará este vacío.
preview
Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada

Redes neuronales: así de sencillo (Parte 94): Optimización de la secuencia de entrada

Al trabajar con series temporales, siempre utilizamos los datos de origen en su secuencia histórica. Pero, ¿es ésta la mejor opción? Existe la opinión de que cambiar la secuencia de los datos de entrada mejorará la eficacia de los modelos entrenados. En este artículo te invito a conocer uno de los métodos para optimizar la secuencia de entrada.