Automatización de estrategias de trading en MQL5 (Parte 15): Patrón armónico Cypher de acción del precio con visualización
En este artículo, exploramos la automatización del patrón armónico Cypher en MQL5, detallando su detección y visualización en los gráficos de MetaTrader 5. Implementamos un Asesor Experto que identifica puntos de oscilación, valida patrones basados en Fibonacci y ejecuta operaciones con anotaciones gráficas claras. El artículo concluye con una guía sobre cómo realizar pruebas retrospectivas y optimizar el programa para lograr un trading efectivo.
Redes neuronales en el trading: Transformer parámetro-eficiente con atención segmentada (PSformer)
Hoy proponemos al lector un primer contacto con el nuevo framework PSformer, que adapta la arquitectura del Transformer vainilla para resolver problemas de previsión de series temporales multidimensionales. El framework se basa en dos innovaciones clave: el mecanismo de compartición de parámetros (PS) y la atención a los segmentos espaciotemporales (SegAtt).
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 16): Introducción a la teoría de los cuartos (II) - Intrusion Detector EA
En nuestro artículo anterior presentamos un script sencillo llamado «The Quarters Drawer». Partiendo de esa base, ahora damos el siguiente paso creando un Asesor Experto (Expert Advisor, EA) de monitoreo, destinado a seguir estos cuartos y a proporcionar supervisión sobre posibles reacciones del mercado en dichos niveles. Acompáñenos mientras exploramos el proceso de desarrollo de una herramienta de detección de zonas en este artículo.
Redes neuronales en el trading: Mejora de la eficiencia del Transformer mediante la reducción de la nitidez (Final)
El SAMformer ofrece una solución a los problemas clave del Transformer en la previsión de series temporales a largo plazo, incluida la complejidad del entrenamiento y la escasa generalización a muestras pequeñas. Su arquitectura poco profunda y la optimización con control de nitidez garantizan que se eviten los malos mínimos locales. En este artículo, proseguiremos la aplicación de enfoques utilizando MQL5 y evaluaremos su valor práctico.
Kit de herramientas de negociación MQL5 (Parte 8): Cómo implementar y utilizar la librería History Manager en sus proyectos
Descubra cómo importar y utilizar sin esfuerzo la librería History Manager en su código MQL5 para procesar los historiales de operaciones en su cuenta MetaTrader 5 en el último artículo de esta serie. Con simples llamadas a funciones de una sola línea en MQL5, puede gestionar y analizar de forma eficaz sus datos de trading. Además, aprenderá a crear diferentes scripts de análisis del historial comercial y a desarrollar un asesor experto basado en precios como ejemplos prácticos de uso. El EA de ejemplo aprovecha los datos de precios y la librería History Manager para tomar decisiones de trading informadas, ajustar los volúmenes de operaciones e implementar estrategias de recuperación basadas en operaciones cerradas anteriormente.
Websockets para MetaTrader 5: conexiones de cliente asíncronas con la API de Windows
Este artículo detalla el desarrollo de una biblioteca personalizada vinculada dinámicamente y diseñada para facilitar las conexiones asíncronas de clientes WebSocket para las aplicaciones MetaTrader 5.
Introducción a MQL5 (Parte 14): Guía para principiantes sobre cómo crear indicadores personalizados (III)
Aprenda a construir un indicador de patrón armónico en MQL5 utilizando objetos gráficos. Descubra cómo detectar puntos de oscilación, aplicar retrocesos de Fibonacci y automatizar el reconocimiento de patrones.
Creación de un sistema personalizado de detección de regímenes de mercado en MQL5 (Parte 2): Asesor experto
Este artículo detalla la construcción de un Asesor Experto Adaptativo (MarketRegimeEA) utilizando el detector de régimen de la Parte 1. Cambia automáticamente las estrategias comerciales y los parámetros de riesgo para mercados con tendencia, rango o volátiles. Se incluyen optimización práctica, manejo de transiciones y un indicador de múltiples marcos de tiempo.
Redes neuronales en el trading: Actor—Director—Crítico (Final)
El framework Actor—Director—Critic supone una evolución de la arquitectura clásica de aprendizaje de agentes. El artículo presenta la experiencia práctica de su aplicación y adaptación a las condiciones de los mercados financieros.
Redes neuronales en el trading: Jerarquía de habilidades para el comportamiento adaptativo de agentes (Final)
El artículo analiza la aplicación práctica del framework HiSSD en tareas de trading algorítmico. Muestra cómo la jerarquía de habilidades y la arquitectura adaptativa pueden usarse para construir estrategias de negociación sostenibles.
Trading por pares: negociación algorítmica con optimización automática en la diferencia de puntuación Z
En este artículo, veremos qué es el trading por pares y cómo se realiza el comercio de correlaciones. También crearemos un asesor experto para automatizar el trading por pares y añadiremos la capacidad de optimizar automáticamente dicho algoritmo comercial a partir de los datos históricos. Además, como parte del proyecto, aprenderemos a calcular la divergencia de dos pares utilizando la puntuación z.
Automatización de estrategias de trading en MQL5 (Parte 16): Ruptura del rango de medianoche con BoS (Break of Structure) basada en la acción del precio
En este artículo, automatizamos la estrategia de ruptura de rango de medianoche con ruptura de estructura en MQL5 y detallamos el código para la detección de ruptura y la ejecución de operaciones. Definimos parámetros de riesgo precisos para entradas, stops y ganancias. Se incluyen pruebas retrospectivas y optimización para el trading práctico.
Redes neuronales en el trading: Optimización de LSTM para la predicción de series temporales multivariadas (Final)
Continuamos implementando el framework DA-CG-LSTM, que ofrece métodos innovadores para el análisis y pronóstico de series temporales. El uso de CG-LSTM y atención dual permite una detección más precisa de las dependencias de largo y corto plazo en los datos, lo cual resulta particularmente útil para trabajar con los mercados financieros.
Redes neuronales en el trading: Optimización LSTM para la previsión de series temporales multivariantes (DA-CG-LSTM)
En este artículo presentamos el algoritmo DA-CG-LSTM, que ofrece nuevos enfoques para el análisis y la previsión de series temporales. En él aprenderemos cómo los innovadores mecanismos de atención y la flexibilidad de los modelos mejoran la precisión de las predicciones.
Creación de interfaces gráficas dinámicas MQL5 mediante el escalado de imágenes basado en recursos con interpolación bicúbica en gráficos de trading
En este artículo exploramos las interfaces gráficas dinámicas MQL5, utilizando interpolación bicúbica para un escalado de imágenes de alta calidad en los gráficos de trading. Detallamos opciones de posicionamiento flexibles que permiten el centrado dinámico o el anclaje en esquina con desplazamientos personalizados.