
Manuelle Backtest leicht gemacht: Aufbau eines nutzerdefinierten Toolkits für Strategietester in MQL5
In diesem Artikel entwickeln wir ein nutzerdefiniertes MQL5-Toolkit für einfache manuelle Backtests im Strategy Tester. Wir erläutern den Aufbau und die Umsetzung des Systems und konzentrieren uns dabei auf interaktive Handelskontrollen. Wir zeigen dann, wie man damit Strategien effektiv testen kann

Handel mit dem MQL5 Wirtschaftskalender (Teil 9): Bessere Interaktion mit Nachrichten durch eine dynamische Bildlaufleiste und eine optimierte Anzeige
In diesem Artikel erweitern wir den MQL5-Wirtschaftskalender um eine dynamische Bildlaufleiste für eine intuitive Nachrichtennavigation. Wir sorgen für eine reibungslose Darstellung der Ereignisse und eine effiziente Aktualisierungen. Wir validieren die reaktionsschnelle Bildlaufleiste und das ausgefeilte Dashboard durch Tests.

Neuronale Netze im Handel: Hierarchisches Lernen der Merkmale von Punktwolken
Wir untersuchen weiterhin Algorithmen zur Extraktion von Merkmalen aus einer Punktwolke. In diesem Artikel werden wir uns mit den Mechanismen zur Steigerung der Effizienz der PointNet-Methode vertraut machen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 67): Verwendung von TRIX-Mustern und der Williams Percent Range
Der Triple Exponential Moving Average Oscillator (TRIX) und der Williams Percentage Range Oscillator sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Dieses Indikatorpaar ist, wie die anderen, die wir kürzlich behandelt haben, ebenfalls komplementär, da der TRIX den Trend definiert, während die Williams Percent Range die Unterstützungs- und Widerstandsniveaus bestätigt. Wie immer verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu testen.

Datenwissenschaft und ML (Teil 39): News + Künstliche Intelligenz, würden Sie darauf wetten?
Nachrichten treiben die Finanzmärkte an, insbesondere wichtige Veröffentlichungen wie die Non-Farm Payrolls (NFP, Beschäftigung außerhalb der Landwirtschaft). Wir alle haben schon erlebt, wie eine einzige Schlagzeile starke Kursbewegungen auslösen kann. In diesem Artikel befassen wir uns mit der leistungsstarken Schnittmenge von Nachrichtendaten und künstlicher Intelligenz.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil V): Zwei-Faktoren-Authentifizierung (2FA)
Heute werden wir uns mit der Verbesserung der Sicherheit für das derzeit in der Entwicklung befindliche Trading Administrator Panel befassen. Wir werden untersuchen, wie MQL5 in eine neue Sicherheitsstrategie implementiert werden kann, indem die Telegram-API für die Zwei-Faktor-Authentifizierung (2FA) verwendet wird. Diese Diskussion wird wertvolle Einblicke in die Anwendung von MQL5 bei der Verstärkung von Sicherheitsmaßnahmen liefern. Darüber hinaus werden wir die Funktion MathRand untersuchen, wobei wir uns auf ihre Funktionalität konzentrieren werden und darauf, wie sie innerhalb unseres Sicherheitsrahmens effektiv genutzt werden kann. Lesen Sie weiter, um mehr zu erfahren!

Handel mit dem MQL5 Wirtschaftskalender (Teil 6): Automatisierung des Handelseinstiegs mit der Analyse von Nachrichtenereignissen und Countdown-Timern
In diesem Artikel implementieren wir einen automatischen Handelseinstieg mit dem MQL5-Wirtschaftskalender, indem wir nutzerdefinierte Filter und Zeitverschiebungen anwenden, um qualifizierte Nachrichtenereignisse zu identifizieren. Wir vergleichen die prognostizierten und die vorherigen Werte, um zu entscheiden, ob ein KAUF oder VERKAUF eröffnet werden soll. Dynamische Countdown-Timer zeigen die verbleibende Zeit bis zur Veröffentlichung von Nachrichten an und werden nach einem Handel automatisch zurückgesetzt.

MQL5-Handelswerkzeuge (Teil 1): Aufbau eines interaktiven visuellen Handelsassistenten für schwebende Aufträge
In diesem Artikel stellen wir die Entwicklung eines interaktiven Handelsassistenten in MQL5 vor, der die Platzierung schwebender Aufträge im Devisenhandel vereinfachen soll. Wir skizzieren das konzeptionelle Design und konzentrieren uns dabei auf eine nutzerfreundliche GUI für die visuelle Einstellung von Einstiegs-, Stop-Loss- und Take-Profit-Levels auf dem Chart. Darüber hinaus wird die MQL5-Implementierung und der Backtest-Prozess detailliert beschrieben, um die Zuverlässigkeit des Tools zu gewährleisten und die Voraussetzungen für die fortgeschrittenen Funktionen in den vorhergehenden Teilen zu schaffen.

Neuronale Netze im Handel: Transformer mit relativer Kodierung
Selbstüberwachtes Lernen kann ein effektives Mittel sein, um große Mengen ungekennzeichneter Daten zu analysieren. Die Effizienz wird durch die Anpassung der Modelle an die spezifischen Merkmale der Finanzmärkte gewährleistet, was zur Verbesserung der Wirksamkeit der traditionellen Methoden beiträgt. In diesem Artikel wird ein alternativer Aufmerksamkeitsmechanismus vorgestellt, der die relativen Abhängigkeiten und Beziehungen zwischen den Eingaben berücksichtigt.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 52): Accelerator Oszillator
Der Accelerator Oszillator ist ein weiterer Indikator von Bill Williams, der die Beschleunigung der Preisdynamik und nicht nur ihr Tempo verfolgt. Ähnlich wie der Awesome Oszillator, den wir in einem kürzlich erschienenen Artikel besprochen haben, versucht er, die Verzögerungseffekte zu vermeiden, indem er sich mehr auf die Beschleunigung als auf die Geschwindigkeit konzentriert. Wir untersuchen wie immer, welche Muster wir daraus ableiten können und welche Bedeutung sie für den Handel mit einem von einem Assistenten zusammengestellten Expert Advisor haben könnten.

Automatisieren von Handelsstrategien in MQL5 (Teil 17): Die Grid-Mart Scalping Strategie mit einem dynamischen Dashboard meistern
In diesem Artikel erforschen wir die Grid-Mart Scalping Strategie und automatisieren sie in MQL5 mit einem dynamischen Dashboard für Echtzeit-Handelseinblicke. Wir erläutern die gitterbasierte Martingale-Logik und die Risikomanagement-Funktionen. Wir begleiten auch die Backtests und den Einsatz für eine solide Performance.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 65): Verwendung von FrAMA-Mustern und des Force Index
Der Fractal Adaptive Moving Average (FrAMA) und der Oszillator Force Index sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Diese beiden Indikatoren ergänzen sich ein wenig, denn der FrAMA ist ein Trendfolgeindikator, während der Force Index ein volumenbasierter Oszillator ist. Wie immer verwenden wir den MQL5-Assistenten, um das Potenzial der beiden schnell zu erkunden.

MQL5-Handelswerkzeuge (Teil 2): Verbesserung des interaktiven Handelsassistenten durch dynamisches, visuelles Feedback
In diesem Artikel aktualisieren wir unser Handelsassistenten-Tool durch Hinzufügen von Drag-and-Drop-Funktionen und Hover-Effekten, um die Oberfläche intuitiver und reaktionsschneller zu gestalten. Wir verfeinern das Tool zur Validierung von Echtzeit-Auftrags-Setups, um präzise Handelskonfigurationen im Verhältnis zu den Marktpreisen sicherzustellen. Wir führen auch Backtests dieser Verbesserungen durch, um ihre Zuverlässigkeit zu bestätigen.

Neuronale Netze leicht gemacht (Teil 97): Modelle mit MSFformer trainieren
Bei der Erforschung verschiedener Modellarchitekturen wird dem Prozess des Modelltrainings oft nicht genügend Aufmerksamkeit geschenkt. In diesem Artikel möchte ich diese Lücke schließen.

Neuronale Netze im Handel: Kontrollierte Segmentierung
In diesem Artikel wird eine Methode zur Analyse komplexer multimodaler Interaktionen und zum Verstehen von Merkmalen erörtert.

Neuronale Netze im Handel: Der Contrastive Muster-Transformer
Der Contrastive Transformer wurde entwickelt, um Märkte sowohl auf der Ebene einzelner Kerzen als auch auf der Basis ganzer Muster zu analysieren. Dies trägt dazu bei, die Qualität der Modellierung von Markttrends zu verbessern. Darüber hinaus fördert der Einsatz des kontrastiven Lernens zum Abgleich der Darstellungen von Kerzen und Mustern die Selbstregulierung und verbessert die Genauigkeit der Prognosen.

MQL5-Handelswerkzeuge (Teil 3): Aufbau eines Multi-Timeframe Scanner Dashboards für den strategischen Handel
In diesem Artikel bauen wir ein Multi-Timeframe-Scanner-Dashboard in MQL5, um Handelssignale in Echtzeit anzuzeigen. Wir planen eine interaktive Gitterschnittstelle, implementieren Signalberechnungen mit mehreren Indikatoren und fügen eine Schaltfläche zum Schließen hinzu. Der Artikel schließt mit Backtests und strategischen Handelsvorteilen

Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (HypDiff)
Der Artikel befasst sich mit Methoden zur Kodierung von Ausgangsdaten im hyperbolischen latenten Raum durch anisotrope Diffusionsprozesse. Dies trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation genauer zu erfassen und die Qualität der Analyse zu verbessern.

Neuronale Netze im Handel: Verringerung des Speicherverbrauchs mit der Adam-mini-Optimierung
Eine der Möglichkeiten zur Steigerung der Effizienz des Modelltrainings und des Konvergenzprozesses ist die Verbesserung der Optimierungsmethoden. Adam-mini ist eine adaptive Optimierungsmethode, die den grundlegenden Adam-Algorithmus verbessern soll.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil XI): Modernes Merkmal Kommunikationsschnittstelle (I)
Heute konzentrieren wir uns auf die Verbesserung der Messaging-Schnittstelle des Kommunikationspanels, um sie an die Standards moderner, leistungsstarker Kommunikationsanwendungen anzupassen. Diese Verbesserung wird durch eine Aktualisierung der Klasse CommunicationsDialog erreicht. Begleiten Sie uns in diesem Artikel und in der Diskussion, wenn wir die wichtigsten Erkenntnisse erkunden und die nächsten Schritte bei der Weiterentwicklung der Schnittstellenprogrammierung mit MQL5 skizzieren.

Entwicklung des Price Action Analysis Toolkit (Teil 22): Korrelation Dashboard
Bei diesem Tool handelt es sich um ein Korrelations-Dashboard, das Korrelationskoeffizienten für mehrere Währungspaare in Echtzeit berechnet und anzeigt. Durch die Visualisierung, wie sich Paare im Verhältnis zueinander bewegen, fügt es Ihrer Preisaktionsanalyse wertvollen Kontext hinzu und hilft Ihnen, die Dynamik zwischen den Märkten zu antizipieren. Lesen Sie weiter, um seine Funktionen und Anwendungen kennenzulernen.

Neuronale Netze im Handel: Optimierung des Transformers für Zeitreihenprognosen (LSEAttention)
Der LSEAttention-Rahmen bietet Verbesserungen der Transformer-Architektur. Es wurde speziell für langfristige multivariate Zeitreihenprognosen entwickelt. Die von den Autoren der Methode vorgeschlagenen Ansätze können angewandt werden, um Probleme des Entropiekollapses und der Lerninstabilität zu lösen, die bei einem einfachen Transformer häufig auftreten.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 55): SAC mit priorisierter Erfahrungswiederholung
Replay-Puffer sind beim Reinforcement Learning besonders wichtig bei Off-Policy-Algorithmen wie DQN oder SAC. Damit wird das Sampling-Verfahren dieses Speicherpuffers in den Mittelpunkt gerückt. Während bei den Standardoptionen von SAC beispielsweise eine zufällige Auswahl aus diesem Puffer verwendet wird, wird bei den priorisierten Erfahrungswiederholungspuffern eine Feinabstimmung vorgenommen, indem eine Auswahl aus dem Puffer auf der Grundlage eines TD-Scores erfolgt. Wir gehen auf die Bedeutung des Reinforcement Learning ein und untersuchen wie immer nur diese Hypothese (nicht die Kreuzvalidierung) in einem von einem Assistenten zusammengestellten Expert Advisor.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 63): Verwenden von Mustern der Kanäle von DeMarker und Envelope
Der DeMarker-Oszillator und der Envelope-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir prüfen daher Muster für Muster, was von Nutzen sein könnte und was möglicherweise zu vermeiden ist. Wir verwenden, wie immer, einen von einem Assistenten erstellten Expert Advisor zusammen mit den Funktionen der Musterverwendung, die in der Signalklasse des Expert Advisors integriert sind.

Die Grenzen des maschinellen Lernens überwinden (Teil 1): Mangel an interoperablen Metriken
Es gibt eine mächtige und allgegenwärtige Kraft, die die kollektiven Bemühungen unserer Gemeinschaft, verlässliche Handelsstrategien zu entwickeln, die KI in irgendeiner Form einsetzen, leise untergräbt. In diesem Artikel wird festgestellt, dass ein Teil der Probleme, mit denen wir konfrontiert sind, auf das blinde Festhalten an „Best Practices“ zurückzuführen ist. Indem wir dem Leser einfache marktbasierte Beweise aus der realen Welt vorlegen, werden wir ihm erklären, warum wir von einem solchen Verhalten absehen und stattdessen bereichsgebundene „Best Practices“ anwenden müssen, wenn unsere Gemeinschaft eine Chance haben soll, das latente Potenzial der KI zu nutzen.

Neuronale Netze im Handel: Ein parameter-effizienter Transformer mit segmentierter Aufmerksamkeit (PSformer)
In diesem Artikel wird das neue PSformer-Framework vorgestellt, das die Architektur des einfachen Transformers an die Lösung von Problemen im Zusammenhang mit multivariaten Zeitreihenprognosen anpasst. Der Rahmen basiert auf zwei wichtigen Innovationen: dem Parameter-Sharing-Mechanismus (PS) und der Segment Attention (SegAtt).

Neuronale Netze im Handel: Transformer für die Punktwolke (Pointformer)
In diesem Artikel geht es um Algorithmen für die Verwendung von Aufmerksamkeitsmethoden zur Lösung von Problemen bei der Erkennung von Objekten in einer Punktwolke. Die Erkennung von Objekten in Punktwolken ist für viele reale Anwendungen wichtig.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 58): Reinforcement Learning (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Der gleitende Durchschnitt und der Stochastik-Oszillator sind sehr gebräuchliche Indikatoren, deren kollektive Muster wir im vorangegangenen Artikel mittels eines überwachten Lernnetzwerks untersucht haben, um zu sehen, welche „Muster haften bleiben“ würden. Wir gehen mit unseren Analysen aus diesem Artikel noch einen Schritt weiter, indem wir die Auswirkungen des Reinforcement Learnings auf die Leistung untersuchen, wenn es mit diesem trainierten Netz eingesetzt wird. Die Leser sollten beachten, dass sich unsere Tests auf ein sehr begrenztes Zeitfenster beziehen. Nichtsdestotrotz nutzen wir weiterhin die minimalen Programmieranforderungen, die der MQL5-Assistent bietet, um dies zu zeigen.

Connexus Observer (Teil 8): Hinzufügen eines Request Observer
In diesem letzten Teil unserer Connexus-Bibliotheksreihe haben wir uns mit der Implementierung des Observer-Patterns sowie mit wesentlichen Refactorings von Dateipfaden und Methodennamen beschäftigt. Diese Serie umfasst die gesamte Entwicklung von Connexus, das die HTTP-Kommunikation in komplexen Anwendungen vereinfachen soll.

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 61): Verwendung von ADX- und CCI-Mustern mit überwachtem Lernen
Die Oszillatoren ADX und CCI sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir sehen uns an, wie dies durch die Verwendung aller 3 Haupttrainingsarten des maschinellen Lernens systematisiert werden kann. Die Wizard Assembled Expert Advisors ermöglichen es uns, die von diesen beiden Indikatoren dargestellten Muster zu bewerten, und wir beginnen damit, zu untersuchen, wie Supervised-Learning auf diese Muster angewendet werden kann.

Handel mit dem MQL5 Wirtschaftskalender (Teil 8): Optimierung des nachrichtengesteuerten Backtests mit intelligenter Ereignisfilterung und gezielten Protokollen
In diesem Artikel optimieren wir unseren Wirtschaftskalender mit intelligenter Ereignisfilterung und gezielter Protokollierung für ein schnelleres, klareres Backtests im Live- und Offline-Modus. Wir rationalisieren die Ereignisverarbeitung und konzentrieren die Protokolle auf kritische Handels- und Dashboard-Ereignisse, um die Strategievisualisierung zu verbessern. Diese Verbesserungen ermöglichen ein nahtloses Testen und Verfeinern von nachrichtengesteuerten Handelsstrategien.

Neuronale Netze im Handel: Hierarchische Vektortransformer (HiVT)
Wir laden Sie ein, die Methode Hierarchical Vector Transformer (HiVT) kennenzulernen, die für die schnelle und genaue Vorhersage von multimodalen Zeitreihen entwickelt wurde.

Neuronale Netze im Handel: Verbesserung des Wirkungsgrads der Transformer durch Verringerung der Schärfe (letzter Teil)
SAMformer bietet eine Lösung für die wichtigsten Nachteile von Transformer-Modellen in der langfristigen Zeitreihenprognose, wie z. B. die Komplexität des Trainings und die schlechte Generalisierung auf kleinen Datensätzen. Die flache Architektur und die auf Schärfe ausgerichtete Optimierung helfen, suboptimale lokale Minima zu vermeiden. In diesem Artikel werden wir die Umsetzung von Ansätzen mit MQL5 fortsetzen und ihren praktischen Wert bewerten.

Datenwissenschaft und ML (Teil 38): AI Transfer Learning auf den Forexmärkten
Die KI-Durchbrüche, die die Schlagzeilen beherrschen, von ChatGPT bis hin zu selbstfahrenden Autos, entstehen nicht durch isolierte Modelle, sondern durch kumulatives Wissen, das aus verschiedenen Modellen oder gemeinsamen Bereichen übertragen wird. Jetzt kann derselbe Ansatz "einmal lernen, überall anwenden" angewandt werden, um unsere KI-Modelle im algorithmischen Handel zu transformieren. In diesem Artikel erfahren wir, wie wir die aus verschiedenen Instrumenten gewonnenen Informationen nutzen können, um mit Hilfe von Transfer Learning die Vorhersagen für andere Instrumente zu verbessern.

Die Grenzen des maschinellen Lernens überwinden (Teil 2): Mangelnde Reproduzierbarkeit
Der Artikel geht der Frage nach, warum die Handelsergebnisse bei verschiedenen Brokern selbst bei Verwendung derselben Strategie und desselben Finanzsymbols aufgrund dezentraler Preisfestsetzung und Datenabweichungen erheblich voneinander abweichen können. Der Artikel hilft MQL5-Entwicklern zu verstehen, warum ihre Produkte auf dem MQL5-Marktplatz gemischte Bewertungen erhalten können, und fordert die Entwickler auf, ihre Ansätze auf bestimmte Makler zuzuschneiden, um transparente und reproduzierbare Ergebnisse zu gewährleisten. Dies könnte sich zu einer wichtigen bereichsgebundenen Best Practice entwickeln, die unserer Gemeinschaft gute Dienste leisten würde, wenn sie auf breiter Ebene übernommen würde.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 64): Verwendung von Mustern von DeMarker und Envelope-Kanälen mit dem Kernel des weißen Rauschens
Der DeMarker-Oszillator und der Envelopes-Indikator sind Momentum- und Unterstützungs-/Widerstands-Tools, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem diese beiden Indikatoren vorgestellt wurden, indem wir das maschinelle Lernen in den Mix aufnehmen. Wir verwenden ein rekurrentes neuronales Netz, das den Kernel des weißen Rauschens nutzt, um die vektorisierten Signale dieser beiden Indikatoren zu verarbeiten. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 66): Verwendung von FrAMA-Mustern und des Force Index mit dem Punktprodukt-Kernel
Der FrAMA-Indikator und der Force Index Oscillator sind Trend- und Volumeninstrumente, die bei der Entwicklung eines Expert Advisors kombiniert werden können. Wir knüpfen an unseren letzten Artikel an, in dem dieses Paar vorgestellt wurde, und betrachten die Anwendbarkeit des maschinellen Lernens auf dieses Paar. Wir verwenden ein neuronales Faltungsnetzwerk, das den Punkt-Produkt-Kernel bei der Erstellung von Prognosen mit den Eingaben dieser Indikatoren verwendet. Dies geschieht in einer nutzerdefinierten Signalklassendatei, die mit dem MQL5-Assistenten arbeitet, um einen Expert Advisor zusammenzustellen.

Neuronale Netze im Handel: Parametereffizienter Transformer mit segmentierter Aufmerksamkeit (letzter Teil)
In der vorangegangenen Arbeit haben wir die theoretischen Aspekte des PSformer-Rahmens erörtert, der zwei wichtige Neuerungen in der klassischen Transformer-Architektur beinhaltet: den Parameter-Shared (PS)-Mechanismus und die Berücksichtigung von räumlich-zeitlichen Segmenten (SegAtt). In diesem Artikel setzen wir die Arbeit fort, die wir bei der Implementierung der vorgeschlagenen Ansätze mit MQL5 begonnen haben.

Datenwissenschaft und ML (Teil 41): Mustererkennung mit YOLOv8 im Forex und den Aktienmärkten
Die Erkennung von Mustern auf den Finanzmärkten ist eine Herausforderung, denn dazu muss man sehen, was auf dem Chart zu sehen ist, und das ist in MQL5 aufgrund der Bildbeschränkungen schwierig zu bewerkstelligen. In diesem Artikel werden wir ein anständiges Modell in Python besprechen, das uns hilft, mit minimalem Aufwand Muster im Chart zu erkennen.

Neuronale Netze im Handel: Verbesserung des Wirkungsgrads des Transformers durch Verringerung der Schärfe (SAMformer)
Das Training von Transformer-Modellen erfordert große Datenmengen und ist oft schwierig, da die Modelle nicht gut auf kleine Datensätze verallgemeinert werden können. Der SAMformer-Rahmen hilft bei der Lösung dieses Problems, indem er schlechte lokale Minima vermeidet. Dadurch wird die Effizienz der Modelle auch bei begrenzten Trainingsdaten verbessert.