Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Neuronale Netze leicht gemacht (Teil 68): Offline Preference-guided Policy Optimization

Neuronale Netze leicht gemacht (Teil 68): Offline Preference-guided Policy Optimization

Seit den ersten Artikeln, die sich mit dem Verstärkungslernen befassten, haben wir uns auf die eine oder andere Weise mit zwei Problemen befasst: der Erkundung der Umgebung und der Bestimmung der Belohnungsfunktion. Jüngste Artikel haben sich mit dem Problem der Exploration beim Offline-Lernen befasst. In diesem Artikel möchte ich Ihnen einen Algorithmus vorstellen, bei dem die Autoren die Belohnungsfunktion vollständig eliminiert haben.
preview
Einführung in MQL5 (Teil 16): Aufbau von Expert Advisors mit technischen Chart-Mustern

Einführung in MQL5 (Teil 16): Aufbau von Expert Advisors mit technischen Chart-Mustern

Dieser Artikel führt Anfänger in den Aufbau eines MQL5 Expert Advisors ein, der ein klassisches technisches Chart-Muster - Kopf und Schultern - identifiziert und handelt. Sie erfahren, wie Sie das Muster anhand der Preisentwicklung erkennen, es auf dem Chart einzeichnen, Einstiegs-, Stop-Loss- und Take-Profit-Levels festlegen und die Handelsausführung auf der Grundlage des Musters automatisieren können.
preview
Einführung in MQL5 (Teil 11): Eine Anleitung für Anfänger zur Arbeit mit integrierten Indikatoren in MQL5 (II)

Einführung in MQL5 (Teil 11): Eine Anleitung für Anfänger zur Arbeit mit integrierten Indikatoren in MQL5 (II)

Entdecken Sie, wie man einen Expert Advisor (EA) in MQL5 entwickelt, der mehrere Indikatoren wie RSI, MA und Stochastik-Oszillator verwendet, um versteckte steigende und fallende Divergenzen zu erkennen. Lernen Sie, ein effektives Risikomanagement zu implementieren und den Handel zu automatisieren - mit detaillierten Beispielen und vollständig kommentiertem Quellcode für Ausbildungszwecke!
preview
MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 71): Verwendung der Muster des MACD und des OBV

MQL5-Assistenz-Techniken, die Sie kennen sollten (Teil 71): Verwendung der Muster des MACD und des OBV

Die Oszillatoren Moving-Average-Convergence-Divergence (MACD) und On-Balance-Volume (OBV) sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Wie in dieser Artikelserie üblich, ist diese Paarung komplementär, wobei der MACD die Trends bestätigt, während der OBV das Volumen überprüft. Wie üblich verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu erstellen und zu testen.
preview
Propensity Score in der Kausalinferenz

Propensity Score in der Kausalinferenz

Der Artikel befasst sich mit dem Thema Abgleich von Kausalschlüssen. Der Abgleich wird für den Vergleich sich ähnlichen Beobachtungen in einem Datensatz. Dies ist notwendig, um kausale Wirkungen korrekt zu bestimmen und Verzerrungen zu beseitigen. Der Autor erklärt, wie dies beim Aufbau von Handelssystemen auf der Grundlage des maschinellen Lernens hilft, die bei neuen Daten, auf denen sie nicht trainiert wurden, stabiler werden. Der Propensity Score (Tendenzbewertung) spielt eine zentrale Rolle und wird häufig bei Kausalschlüssen verwendet.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 10): Erstellen von Objekten aus einer Zeichenkette

Der EA-Entwicklungsplan umfasst mehrere Stufen, wobei die Zwischenergebnisse in der Datenbank gespeichert werden. Sie können von dort nur als Zeichenketten oder Zahlen wieder abgerufen werden, nicht als Objekte. Wir brauchen also eine Möglichkeit, die gewünschten Objekte im EA anhand der aus der Datenbank gelesenen Strings neu zu erstellen.
preview
Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen

Datenwissenschaft und ML (Teil 37): Mit Kerzenmustern und AI den Markt schlagen

Kerzenmuster helfen Händlern, die Marktpsychologie zu verstehen und Trends auf den Finanzmärkten zu erkennen. Sie ermöglichen fundiertere Handelsentscheidungen, die zu besseren Ergebnissen führen können. In diesem Artikel werden wir untersuchen, wie man Kerzenmuster mit KI-Modellen nutzen kann, um eine optimale Handelsperformance zu erzielen.
preview
Datenkennzeichnung für die Zeitreihenanalyse (Teil 5):Anwendung und Test in einem EA mit Socket

Datenkennzeichnung für die Zeitreihenanalyse (Teil 5):Anwendung und Test in einem EA mit Socket

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung (labeling) von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 42): ADX-Oszillator

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 42): ADX-Oszillator

Der ADX ist ein weiterer relativ beliebter technischer Indikator, der von einigen Händlern verwendet wird, um die Stärke eines vorherrschenden Trends zu messen. Als Kombination von zwei anderen Indikatoren stellt er einen Oszillator dar, dessen Muster wir in diesem Artikel mit Hilfe der MQL5-Assistentengruppe und ihrer Unterstützungsklassen untersuchen.
preview
Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Die Strategien des Opening Range Breakout (ORB) basieren auf der Idee, dass die erste Handelsspanne, die sich kurz nach der Markteröffnung bildet, wichtige Preisniveaus widerspiegelt, bei denen sich Käufer und Verkäufer auf einen Wert einigen. Durch die Identifizierung von Ausbrüchen über oder unter einer bestimmten Spanne können Händler von der Dynamik profitieren, die oft folgt, wenn die Marktrichtung klarer wird. In diesem Artikel werden wir drei ORB-Strategien untersuchen, die von der Concretum Group übernommen wurden.
preview
Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 02): Aufbau der REQUESTS-Bibliothek, inspiriert von Python

Implementierung von praktischen Modulen aus anderen Sprachen in MQL5 (Teil 02): Aufbau der REQUESTS-Bibliothek, inspiriert von Python

In diesem Artikel implementieren wir ein Modul, das den in Python angebotenen Anfragen ähnelt, um das Senden und Empfangen von Web-Anfragen in MetaTrader 5 mit MQL5 zu erleichtern.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 20): Symbolische Regression

Die symbolische Regression ist eine Form der Regression, die von minimalen bis gar keinen Annahmen darüber ausgeht, wie das zugrunde liegende Modell, das die untersuchten Datensätze abbildet, aussehen würde. Obwohl sie mit Bayes'schen Methoden oder neuronalen Netzen implementiert werden kann. Shen wir uns an, wie eine Implementierung mit genetischen Algorithmen helfen kann, eine im MQL5-Assistenten verwendbare Expertensignalklasse anzupassen.
preview
Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

Neuronale Netze leicht gemacht (Teil 78): Decoderfreier Objektdetektor mit Transformator (DFFT)

In diesem Artikel schlage ich vor, das Thema der Entwicklung einer Handelsstrategie aus einem anderen Blickwinkel zu betrachten. Wir werden keine zukünftigen Kursbewegungen vorhersagen, sondern versuchen, ein Handelssystem auf der Grundlage der Analyse historischer Daten aufzubauen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 17): Handel mit mehreren Währungen

Der Handel mit mehreren Währungen ist nicht standardmäßig verfügbar, wenn ein Expertenberater über den Assistenten zusammengestellt wird. Wir untersuchen 2 mögliche Hacks, die Händler machen können, wenn sie ihre Ideen mit mehr als einem Symbol gleichzeitig testen wollen.
preview
Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Aufbau eines nutzerdefinierten Systems zur Erkennung von Marktregimen in MQL5 (Teil 2): Expert Advisor

Dieser Artikel beschreibt den Aufbau eines adaptiven Expert Advisors (MarketRegimeEA) unter Verwendung des Regime-Detektors aus Teil 1. Er wechselt automatisch die Handelsstrategien und Risikoparameter für steigende, volatile oder Seitwärtsmärkte. Praktische Optimierung, Handhabung von Übergängen und ein Indikator für mehrere Zeitrahmen sind enthalten.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung

Automatisieren von Handelsstrategien in MQL5 (Teil 7): Aufbau eines Raster-Handel EA mit dynamischer Losgrößen-Skalierung

In diesem Artikel bauen wir einen Expert Advisor in MQL5 für einen Raster-Handel, der eine dynamische Los-Skalierung verwendet. Wir behandeln die Strategieentwicklung, die Code-Implementierung und den Backtest-Prozess. Abschließend vermitteln wir wichtige Erkenntnisse und bewährte Verfahren zur Optimierung des automatisierten Handelssystems.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 4): Modularisierung von Codefunktionen für bessere Wiederverwendbarkeit

In diesem Artikel wird der bestehende Code für das Senden von Nachrichten und Screenshots (screenshot des Terminals) von MQL5 zu Telegram refaktorisiert, indem er in wiederverwendbare, modulare Funktionen aufgeteilt wird. Dadurch wird der Prozess rationalisiert, was eine effizientere Ausführung und eine einfachere Codeverwaltung über mehrere Instanzen hinweg ermöglicht.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 19): Bayes'sche Inferenz

Die Bayes'sche Inferenz ist die Anwendung des Bayes-Theorems, um die Wahrscheinlichkeitshypothese zu aktualisieren, wenn neue Informationen zur Verfügung stehen. Dies führt intuitiv zu einer Anpassung in der Zeitreihenanalyse, und so schauen wir uns an, wie wir dies bei der Erstellung von nutzerdefinierten Klassen nicht nur für das Signal, sondern auch für das Money-Management und Trailing-Stops nutzen können.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 20): Ordnung in den Ablauf der automatischen Projektoptimierungsphasen bringen (I)

Wir haben bereits eine ganze Reihe von Komponenten entwickelt, die bei der automatischen Optimierung helfen. Bei der Erstellung folgten wir der traditionellen zyklischen Struktur: von der Erstellung eines minimalen funktionierenden Codes bis hin zum Refactoring und dem Erhalt eines verbesserten Codes. Es ist an der Zeit, mit dem Aufräumen unserer Datenbank zu beginnen, die auch eine Schlüsselkomponente in dem von uns geschaffenen System ist.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 17): Weitere Vorbereitung auf den realen Handel

Derzeit verwendet unser EA die Datenbank, um Initialisierungs-Strings für einzelne Instanzen von Handelsstrategien zu erhalten. Die Datenbank ist jedoch recht groß und enthält viele Informationen, die für den eigentlichen EA-Betrieb nicht benötigt werden. Versuchen wir, die Funktionalität des EA ohne eine obligatorische Verbindung zur Datenbank zu gewährleisten.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 50): Der Awesome Oszillator

Der Awesome Oscillator ist ein weiterer Bill-Williams-Indikator, der zur Messung des Momentums verwendet wird. Es kann mehrere Signale generieren, und deshalb überprüfen wir diese auf der Basis von Mustern, wie in früheren Artikeln, indem wir die MQL5-Assistenten-Klassen und -Assembly nutzen.
preview
Erstellen von MQL5-ähnlichen Handelsklassen in Python für MetaTrader 5

Erstellen von MQL5-ähnlichen Handelsklassen in Python für MetaTrader 5

Das MetaTrader 5 Python-Paket bietet eine einfache Möglichkeit, Handelsanwendungen für die MetaTrader 5-Plattform in der Sprache Python zu erstellen. Obwohl dieses Modul ein leistungsstarkes und nützliches Werkzeug ist, ist es nicht so einfach wie die MQL5-Programmiersprache, wenn es darum geht, eine algorithmische Handelslösung zu erstellen. In diesem Artikel werden wir Handelsklassen erstellen, die den in MQL5 angebotenen ähnlich sind, um eine ähnliche Syntax zu schaffen und es einfacher zu machen, Handelsroboter in Python wie in MQL5 zu erstellen.
preview
Vom Neuling zum Experten: Implementierung von Fibonacci-Strategien im Post-NFP-Handel

Vom Neuling zum Experten: Implementierung von Fibonacci-Strategien im Post-NFP-Handel

Auf den Finanzmärkten bleiben Retracements eine grundlegende Kraft: Kurse neigen dazu, nach Bewegungen jeder Größenordnung zurückzulaufen. Da Form und Tiefe eines Retracements ungewiss sind, stützen sich Händler auf mehrere Fibonacci-Niveaus mit unterschiedlicher Einflusswahrscheinlichkeit. Dieser Beitrag stellt eine verfeinerte Fibonacci-Strategie vor, die ereignisgetriebenes Marktverhalten einbezieht, um nach wichtigen Wirtschaftsnachrichten verlässlichere Ein- und Ausstiege zu finden.
preview
Datenkennzeichnung für Zeitreihenanalyse (Teil 6): Anwendung und Test des EAs, der ONNX verwendet

Datenkennzeichnung für Zeitreihenanalyse (Teil 6): Anwendung und Test des EAs, der ONNX verwendet

In dieser Artikelserie werden verschiedene Methoden zur Kennzeichnung von Zeitreihen vorgestellt, mit denen Daten erstellt werden können, die den meisten Modellen der künstlichen Intelligenz entsprechen. Eine gezielte und bedarfsgerechte Kennzeichnung von Daten kann dazu führen, dass das trainierte Modell der künstlichen Intelligenz besser mit dem erwarteten Design übereinstimmt, die Genauigkeit unseres Modells verbessert wird und das Modell sogar einen qualitativen Sprung machen kann!
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

Automatisieren von Handelsstrategien in MQL5 (Teil 12): Umsetzung der Strategie der Mitigation Order Blocks (MOB)

In diesem Artikel bauen wir ein MQL5-Handelssystem auf, das die Orderblock-Erkennung für den Handel des Smart Money automatisiert. Wir skizzieren die Regeln der Strategie, implementieren die Logik in MQL5 und integrieren das Risikomanagement für eine effektive Handelsausführung. Schließlich führen wir Backtests durch, um die Leistung des Systems zu bewerten und es für optimale Ergebnisse zu verfeinern.
preview
Einführung in Connexus (Teil 1): Wie verwendet man die WebRequest-Funktion?

Einführung in Connexus (Teil 1): Wie verwendet man die WebRequest-Funktion?

Dieser Artikel ist der Beginn einer Reihe von Entwicklungen für eine Bibliothek namens „Connexus“, die HTTP-Anfragen mit MQL5 erleichtern soll. Das Ziel dieses Projekts ist es, dem Endnutzer diese Möglichkeit zu bieten und zu zeigen, wie man diese Hilfsbibliothek verwendet. Ich wollte sie so einfach wie möglich gestalten, um das Studium zu erleichtern und die Möglichkeit für künftige Entwicklungen zu schaffen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 44): Technischer Indikator Average True Range (ATR)

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 44): Technischer Indikator Average True Range (ATR)

Der ATR-Oszillator ist ein sehr beliebter Indikator als Volatilitätsproxy, insbesondere auf den Devisenmärkten, auf denen es nur wenige Volumendaten gibt. Wir untersuchen dies auf der Basis von Mustern, wie wir es mit früheren Indikatoren getan haben, und teilen Strategien und Testberichte dank der MQL5-Assistentenbibliotheksklassen und -zusammenstellungen.
preview
Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs(II)-LoRA-Tuning entwickeln und testen

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs(II)-LoRA-Tuning entwickeln und testen

Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.
preview
Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Neuronale Netze leicht gemacht (Teil 79): Feature Aggregated Queries (FAQ) im Kontext des Staates

Im vorigen Artikel haben wir eine der Methoden zur Erkennung von Objekten in einem Bild kennengelernt. Die Verarbeitung eines statischen Bildes ist jedoch etwas anderes als die Arbeit mit dynamischen Zeitreihen, wie z. B. die Dynamik der von uns analysierten Preise. In diesem Artikel werden wir uns mit der Methode der Objekterkennung in Videos befassen, die dem Problem, das wir lösen wollen, etwas näher kommt.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 22): Conditional GANs

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 22): Conditional GANs

Generative Adversarial Networks (GAN) sind eine Kombination von neuronalen Netzen, die sich gegenseitig trainieren, um genauere Ergebnisse zu erzielen. Wir nehmen den bedingten Typ dieser Netze an, da wir eine mögliche Anwendung bei der Vorhersage von Finanzzeitreihen innerhalb einer Klasse von Expertensignalen anstreben.
preview
Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

Neuronale Netze im Handel: Direktionale Diffusionsmodelle (DDM)

In diesem Artikel werden gerichtete Diffusionsmodelle diskutiert, die datenabhängiges anisotropes und gerichtetes Rauschen in einem Vorwärtsdiffusionsprozess ausnutzen, um aussagekräftige Graphendarstellungen zu erfassen.
preview
Den Marktstimmungsindikator automatisieren

Den Marktstimmungsindikator automatisieren

In diesem Artikel entwickeln wir einen nutzerdefinierten Indikator für die Marktstimmung, um die Bedingungen in aufwärts, abwärts, mehr und weniger Risiko oder neutral zu klassifizieren. Der Expert Advisor liefert Echtzeit-Einblicke in die vorherrschende Stimmung und vereinfacht den Analyseprozess für aktuelle Markttrends oder -richtungen.
preview
Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram Expert Advisors (Teil 2): Senden von Signalen von MQL5 an Telegram

In diesem Artikel erstellen wir einen in MQL5-Telegram integrierten Expert Advisor, der Moving Average Crossover Signale an Telegram sendet. Wir erläutern den Prozess der Erzeugung von Handelssignalen aus gleitenden Durchschnittsübergängen, die Implementierung des erforderlichen Codes in MQL5 und die Sicherstellung der nahtlosen Integration. Das Ergebnis ist ein System, das Handelswarnungen in Echtzeit direkt an Ihren Telegram-Gruppenchat sendet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 45): Reinforcement Learning mit Monte-Carlo

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 45): Reinforcement Learning mit Monte-Carlo

Monte-Carlo ist der vierte, alternative Algorithmus des Reinforcement Learning, den wir mit dem Ziel betrachten, seine Implementierung in assistentengestützte Expert Advisors zu untersuchen. Obwohl sie auf Zufallsstichproben beruht, bietet sie umfangreiche Simulationsmöglichkeiten, die wir ausnutzen können.
preview
Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Neuronale Netze leicht gemacht (Teil 73): AutoBots zur Vorhersage von Kursbewegungen

Wir fahren fort mit der Erörterung von Algorithmen für das Training von Trajektorievorhersagemodellen. In diesem Artikel werden wir uns mit einer Methode namens „AutoBots“ vertraut machen.
preview
Datenwissenschaft und maschinelles Lernen (Teil 21): Neuronale Netze entschlüsseln, Optimierungsalgorithmen entmystifiziert

Datenwissenschaft und maschinelles Lernen (Teil 21): Neuronale Netze entschlüsseln, Optimierungsalgorithmen entmystifiziert

Tauchen Sie ein in das Herz der neuronalen Netze, indem wir die Optimierungsalgorithmen, die innerhalb des neuronalen Netzes verwendet werden, entmystifizieren. In diesem Artikel erfahren Sie, mit welchen Schlüsseltechniken Sie das volle Potenzial neuronaler Netze ausschöpfen und Ihre Modelle zu neuen Höhen der Genauigkeit und Effizienz führen können.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit

Handel mit dem MQL5 Wirtschaftskalender (Teil 3): Hinzufügen de Filter für Währung, Bedeutung und Zeit

In diesem Artikel implementieren wir Filter in das MQL5-Wirtschaftskalender-Dashboard, um die Anzeige von Nachrichtenereignissen nach Währung, Bedeutung und Zeit zu verfeinern. Wir erstellen zunächst Filterkriterien für jede Kategorie und integrieren diese dann in das Dashboard, um nur relevante Ereignisse anzuzeigen. Schließlich stellen wir sicher, dass jeder Filter dynamisch aktualisiert wird, um Händlern gezielte wirtschaftliche Erkenntnisse in Echtzeit zu liefern.
preview
Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Neuronale Netze leicht gemacht (Teil 76): Erforschung verschiedener Interaktionsmuster mit Multi-Future Transformer

Dieser Artikel setzt das Thema der Vorhersage der kommenden Kursentwicklung fort. Ich lade Sie ein, sich mit der Architektur eines Multi-Future Transformers vertraut zu machen. Die Hauptidee besteht darin, die multimodale Verteilung der Zukunft in mehrere unimodale Verteilungen zu zerlegen, was es ermöglicht, verschiedene Modelle der Interaktion zwischen Agenten auf der Szene effektiv zu simulieren.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 12): Entwicklung eines Risikomanagers auf der Ebene des Eigenhandels

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 12): Entwicklung eines Risikomanagers auf der Ebene des Eigenhandels

In dem EA, der hier entwickelt wird, haben wir bereits einen bestimmten Mechanismus zur Kontrolle des Drawdowns. Sie ist jedoch probabilistischer Natur, da sie auf den Ergebnissen von Tests mit historischen Preisdaten beruht. Daher kann der Drawdown manchmal die maximal erwarteten Werte übersteigen (wenn auch mit einer geringen Wahrscheinlichkeit). Versuchen wir, einen Mechanismus hinzuzufügen, der die garantierte Einhaltung der festgelegten Drawdown-Höhe gewährleistet.
preview
Neuronale Netze im Handel: Eine komplexe Methode zur Vorhersage einer Trajektorie (Traj-LLM)

Neuronale Netze im Handel: Eine komplexe Methode zur Vorhersage einer Trajektorie (Traj-LLM)

In diesem Artikel möchte ich Ihnen eine interessante Methode zur Vorhersage von Trajektorien vorstellen, die zur Lösung von Problemen im Bereich der autonomen Fahrzeugbewegungen entwickelt wurde. Die Autoren der Methode haben die besten Elemente verschiedener architektonischer Lösungen kombiniert.