Artikel über das Programmieren und Anwenden von Handelsrobotern in MQL5

icon

Expert Advisors erfüllen unterschiedliche Funktionen auf der Plattform MetaTrader. Handelroboter können Finanzinstrumente rund um die Uhr verfolgen, Trades kopieren, Berichte erstellen und abschicken, sogar dem Händler eine speizielle auf seine Bestellung entwickelte grafische Benutzeroberfläche bieten.

In den Artikeln sind Programmierverfahren, mathematische Ideen für Datenverarbeitung, Ratschläge für Erstellung und Bestellung von Handelsrobotern.

Neuer Artikel
letzte | beste
preview
Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

Klassische Strategien neu interpretieren (Teil VI): Analyse mehrerer Zeitrahmen

In dieser Artikelserie nehmen wir klassische Strategien unter die Lupe, um zu sehen, ob wir sie mithilfe von KI verbessern können. Im heutigen Artikel werden wir die beliebte Strategie der Analyse mehrerer Zeitrahmen untersuchen, um zu beurteilen, ob die Strategie durch KI verbessert werden kann.
preview
Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 3): Senden von Screenshots des Charts mit einer Legende von MQL5 an Telegram

Erstellen eines integrierten MQL5-Telegram-Expertenberaters (Teil 3): Senden von Screenshots des Charts mit einer Legende von MQL5 an Telegram

In diesem Artikel erstellen wir einen MQL5 Expert Advisor, der Chart-Screenshots als Bilddaten kodiert und sie über HTTP-Anfragen an einen Telegram-Chat sendet. Durch die Integration von Fotocodierung und -übertragung erweitern wir das bestehende MQL5-Telegram-System um visuelle Handelseinblicke direkt in Telegram.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 3): Das Zone Recovery RSI System für ein dynamisches Handelsmanagement

Automatisieren von Handelsstrategien in MQL5 (Teil 3): Das Zone Recovery RSI System für ein dynamisches Handelsmanagement

In diesem Artikel erstellen wir ein Zone Recovery RSI EA System in MQL5, das RSI-Signale verwendet, um Handelsgeschäfte auszulösen und eine Recovery-Strategie, um auf Verluste zu reagieren. Wir implementieren die Klasse „ZoneRecovery“ zur Automatisierung von Handelseinträgen, Erholungslogik und Positionsmanagement. Der Artikel schließt mit Erkenntnissen zu den Backtests, um die Leistung zu optimieren und die Effektivität des EA zu erhöhen.
preview
Entwicklung des Price Action Analysis Toolkit (Teil 21): Das Tool Market Structure Flip Detector

Entwicklung des Price Action Analysis Toolkit (Teil 21): Das Tool Market Structure Flip Detector

Der Market Structure Flip Detector Expert Advisor (EA) agiert als Ihr aufmerksamer Partner, der ständig die Veränderungen der Marktstimmung beobachtet. Durch die Verwendung von Average True Range (ATR)-basierten Schwellenwerten erkennt es effektiv Strukturumkehrungen und kennzeichnet jedes höhere Tief und niedrigere Hoch mit klaren Indikatoren. Dank der schnellen Ausführung und der flexiblen API von MQL5 bietet dieses Tool eine Echtzeitanalyse, die die Anzeige für eine optimale Lesbarkeit anpasst und ein Live-Dashboard zur Überwachung der Anzahl und des Timings von Flips bereitstellt. Darüber hinaus sorgen anpassbare Ton- und Push-Benachrichtigungen dafür, dass Sie über kritische Signale informiert bleiben, sodass Sie sehen können, wie einfache Eingaben und Hilfsroutinen Kursbewegungen in umsetzbare Strategien verwandeln können.
preview
Neuronale Netze leicht gemacht (Teil 89): Transformer zur Frequenzzerlegung (FEDformer)

Neuronale Netze leicht gemacht (Teil 89): Transformer zur Frequenzzerlegung (FEDformer)

Alle Modelle, die wir bisher betrachtet haben, analysieren den Zustand der Umwelt als Zeitfolge. Die Zeitreihen können aber auch in Form von Häufigkeitsmerkmalen dargestellt werden. In diesem Artikel stelle ich Ihnen einen Algorithmus vor, der Frequenzkomponenten einer Zeitsequenz zur Vorhersage zukünftiger Zustände verwendet.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (II)

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (II)

Denken wir über einen unabhängigen Expert Advisor nach. Zuvor haben wir einen indikatorbasierten Expert Advisor besprochen, der auch mit einem unabhängigen Skript zum Zeichnen der Risiko- und Ertragsgeometrie zusammenarbeitet. Heute werden wir die Architektur eines MQL5 Expert Advisors besprechen, der alle Funktionen in einem Programm integriert.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 28): GANs überarbeitet mit einer Anleitung zu Lernraten

Die Lernrate ist eine Schrittgröße in Richtung eines Trainingsziels in den Trainingsprozessen vieler maschineller Lernalgorithmen. Wir untersuchen die Auswirkungen, die die vielen Zeitpläne und Formate auf die Leistung eines Generative Adversarial Network haben können, eine Art neuronales Netz, das wir in einem früheren Artikel untersucht haben.
preview
MQL5 Handels-Toolkit (Teil 3): Entwicklung einer EX5-Bibliothek zur Verwaltung schwebenden Aufträge

MQL5 Handels-Toolkit (Teil 3): Entwicklung einer EX5-Bibliothek zur Verwaltung schwebenden Aufträge

Lernen Sie, wie Sie eine umfassende EX5-Bibliothek für schwebende Aufträge in Ihrem MQL5-Code oder Ihren Projekten entwickeln und implementieren. Dieser Artikel zeigt Ihnen, wie Sie eine umfangreiche EX5-Bibliothek für die Verwaltung schwebender Aufträge erstellen können, und führt Sie durch den Import und die Implementierung dieser Bibliothek, indem er ein Handels-Panel oder eine grafische Nutzeroberfläche (GUI) erstellt. Das Expert Advisor-Order-Panel ermöglicht es den Nutzern, schwebende Aufträge, die mit einer bestimmten magischen Zahl verknüpft sind, direkt über die grafische Oberfläche im Chartfenster zu öffnen, zu überwachen und zu löschen.
preview
Neuronale Netze im Handel: Vereinheitlichtes Trajektoriengenerierungsmodell (UniTraj)

Neuronale Netze im Handel: Vereinheitlichtes Trajektoriengenerierungsmodell (UniTraj)

Das Verständnis des Agentenverhaltens ist in vielen verschiedenen Bereichen wichtig, aber die meisten Methoden konzentrieren sich nur auf eine der Aufgaben (Verstehen, Rauschunterdrückung oder Vorhersage), was ihre Effektivität in realen Szenarien verringert. In diesem Artikel werden wir uns mit einem Modell vertraut machen, das sich an die Lösung verschiedener Probleme anpassen lässt.
preview
Neuronale Netze im Handel: Kontrollierte Segmentierung (letzter Teil)

Neuronale Netze im Handel: Kontrollierte Segmentierung (letzter Teil)

Wir setzen die im vorigen Artikel begonnene Arbeit am Aufbau des RefMask3D-Frameworks mit MQL5 fort. Dieser Rahmen wurde entwickelt, um multimodale Interaktion und Merkmalsanalyse in einer Punktwolke umfassend zu untersuchen, gefolgt von der Identifizierung des Zielobjekts auf der Grundlage einer in natürlicher Sprache gegebenen Beschreibung.
preview
Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

Nutzung des CatBoost Machine Learning Modells als Filter für Trendfolgestrategien

CatBoost ist ein leistungsfähiges, baumbasiertes, maschinelles Lernmodell, das auf die Entscheidungsfindung auf der Grundlage stationärer Merkmale spezialisiert ist. Andere baumbasierte Modelle wie XGBoost und Random Forest haben ähnliche Eigenschaften in Bezug auf ihre Robustheit, ihre Fähigkeit, komplexe Muster zu verarbeiten, und ihre Interpretierbarkeit. Diese Modelle haben ein breites Anwendungsspektrum, das von der Merkmalsanalyse bis zum Risikomanagement reicht.
preview
Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)

Neuronale Netze leicht gemacht (Teil 91): Vorhersage durch Frequenzbereiche (Frequency Domain Forecasting, FreDF)

Wir fahren fort mit der Analyse und Vorhersage von Zeitreihen im Frequenzbereich. In diesem Artikel machen wir uns mit einer neuen Methode zur Vorhersage von Daten im Frequenzbereich vertraut, die zu vielen der bisher untersuchten Algorithmen hinzugefügt werden kann.
preview
Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil III): Visa-Ausgabenindex

Verschaffen Sie sich einen Vorteil auf jedem Markt (Teil III): Visa-Ausgabenindex

In der Welt der Big Data gibt es Millionen von alternativen Datensätzen, die das Potenzial haben, unsere Handelsstrategien zu verbessern. In dieser Artikelserie werden wir Ihnen helfen, die informativsten öffentlichen Datensätze zu finden.
preview
Kategorientheorie in MQL5 (Teil 4): Spannen, Experimente und Kompositionen

Kategorientheorie in MQL5 (Teil 4): Spannen, Experimente und Kompositionen

Die Kategorientheorie ist ein vielfältiger und expandierender Zweig der Mathematik, der in der MQL-Gemeinschaft noch relativ unentdeckt ist. In dieser Artikelserie sollen einige der Konzepte vorgestellt und untersucht werden, mit dem übergeordneten Ziel, eine offene Bibliothek einzurichten, die Einblicke gewährt und hoffentlich die Nutzung dieses bemerkenswerten Bereichs für die Strategieentwicklung von Händlern fördert.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 9): Aufbau eines Expert Advisors für die asiatische Breakout-Strategie

Automatisieren von Handelsstrategien in MQL5 (Teil 9): Aufbau eines Expert Advisors für die asiatische Breakout-Strategie

In diesem Artikel erstellen wir einen Expert Advisor in MQL5 für die Asian Breakout Strategy, indem wir das Hoch und das Tief der Sitzung berechnen und die Trendfilterung mit einem gleitenden Durchschnitt anwenden. Wir implementieren ein dynamisches Objekt-Styling, nutzerdefinierte Zeitangaben und ein robustes Risikomanagement. Schließlich demonstrieren wir Techniken für Backtests und Optimierung zur Verfeinerung des Programms.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 10): Entwicklung der Strategie Trend Flat Momentum

Automatisieren von Handelsstrategien in MQL5 (Teil 10): Entwicklung der Strategie Trend Flat Momentum

In diesem Artikel entwickeln wir einen Expert Advisor in MQL5 für die Strategie Trend Flat Momentum. Wir kombinieren das Kreuzen zweier gleitender Durchschnitte, gefiltert mit dem Momentum von RSI und CCI, um Handelssignale zu generieren. Wir befassen uns auch mit Backtests und möglichen Verbesserungen für die reale Leistung.
preview
Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage

Neuronale Netze leicht gemacht (Teil 85): Multivariate Zeitreihenvorhersage

In diesem Artikel möchte ich Ihnen eine neue komplexe Methode zur Zeitreihenprognose vorstellen, die die Vorteile von linearen Modellen und Transformer harmonisch vereint.
preview
Automatisieren von Handelsstrategien in MQL5 (Teil 11): Entwicklung eines mehrstufigen Raster-Handelssystems

Automatisieren von Handelsstrategien in MQL5 (Teil 11): Entwicklung eines mehrstufigen Raster-Handelssystems

In diesem Artikel entwickeln wir einen EA mit einem Rasterhandels-System mit mehreren Ebenen in MQL5 und konzentrieren uns dabei auf die Architektur und den Algorithmusentwurf hinter den Strategien des Rasterhandels. Wir erforschen die Implementierung einer mehrschichtigen Netzlogik und von Risikomanagementtechniken, um mit unterschiedlichen Marktbedingungen umgehen zu können. Abschließend finden Sie ausführliche Erklärungen und praktische Tipps, die Sie beim Aufbau, Testen und Verfeinern des automatischen Handelssystems unterstützen.
preview
Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Implementierung des kryptografischen SHA-256-Algorithmus von Grund auf in MQL5

Die Entwicklung DLL-freier Integrationen von Kryptowährungsbörsen war lange Zeit eine Herausforderung, aber diese Lösung bietet ein komplettes Framework für die direkte Marktanbindung.
preview
Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Dekodierung von Intraday-Handelsstrategien des Opening Range Breakout

Die Strategien des Opening Range Breakout (ORB) basieren auf der Idee, dass die erste Handelsspanne, die sich kurz nach der Markteröffnung bildet, wichtige Preisniveaus widerspiegelt, bei denen sich Käufer und Verkäufer auf einen Wert einigen. Durch die Identifizierung von Ausbrüchen über oder unter einer bestimmten Spanne können Händler von der Dynamik profitieren, die oft folgt, wenn die Marktrichtung klarer wird. In diesem Artikel werden wir drei ORB-Strategien untersuchen, die von der Concretum Group übernommen wurden.
preview
Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 13): Automatisierung der zweiten Phase — Aufteilung in Gruppen

Die erste Stufe der automatischen Optimierung haben wir bereits umgesetzt. Wir führen die Optimierung für verschiedene Symbole und Zeiträume nach mehreren Kriterien durch und speichern Informationen über die Ergebnisse jedes Durchgangs in der Datenbank. Nun werden wir die besten Gruppen von Parametersätzen aus den in der ersten Stufe gefundenen auswählen.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 39): RSI (Relative Strength Index)

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 39): RSI (Relative Strength Index)

Der RSI ist ein beliebter Momentum-Oszillator, der das Tempo und den Umfang der jüngsten Kursveränderungen eines Wertpapiers misst, um über- und unterbewertete Situationen im Kurs des Wertpapiers zu bewerten. Diese Erkenntnisse in Bezug auf Geschwindigkeit und Ausmaß sind der Schlüssel zur Festlegung von Umkehrpunkten. Wir setzen diesen Oszillator in einer anderen nutzerdefinierten Signalklasse ein und untersuchen die Eigenschaften einiger seiner Signale. Wir beginnen jedoch mit dem Abschluss dessen, was wir zuvor über Bollinger-Bänder begonnen haben.
preview
Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

Vorhersage von Wechselkursen mit klassischen Methoden des maschinellen Lernens: Logit- und Probit-Modelle

In diesem Artikel wird der Versuch unternommen, einen Handels-EA zur Vorhersage von Wechselkursen zu erstellen. Der Algorithmus basiert auf klassischen Klassifikationsmodellen - logistische und Probit-Regression. Das Kriterium des Wahrscheinlichkeitsquotienten wird als Filter für Handelssignale verwendet.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 56): Bill Williams Fraktale

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 56): Bill Williams Fraktale

Die Fraktale von Bill Williams sind ein wirkungsvoller Indikator, der leicht übersehen wird, wenn man ihn zum ersten Mal auf einem Kurschart entdeckt. Er wirkt zu ereignisreich und wahrscheinlich nicht prägnant genug. Wir wollen den Vorhang über diesen Indikator lüften, indem wir untersuchen, was seine verschiedenen Muster bewirken könnten, wenn sie mit Vorwärtstests auf allen mit dem Assistenten zusammengestellten Expert Advisor untersucht werden.
preview
Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

Aufbau des Kerzenmodells Trend-Constraint (Teil 8): Entwicklung eines Expert Advisors (I)

In dieser Diskussion werden wir unseren ersten Expert Advisor in MQL5 erstellen, der auf dem Indikator basiert, den wir im vorherigen Artikel erstellt haben. Wir werden alle Funktionen abdecken, die erforderlich sind, um den Prozess zu automatisieren, einschließlich des Risikomanagements. Dies wird den Nutzern in hohem Maße zugute kommen, wenn sie von der manuellen Ausführung von Geschäften zu automatisierten Systemen übergehen.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 37): Gaußsche Prozessregression mit linearen und Matérn-Kernel

Lineare Kernel sind die einfachste Matrix ihrer Art, die beim maschinellen Lernen für lineare Regression und Support Vector Machines verwendet wird. Der Matérn-Kernel hingegen ist eine vielseitigere Version der Radialbasisfunktion, die wir in einem früheren Artikel besprochen haben, und er eignet sich für die Abbildung von Funktionen, die nicht so glatt sind, wie es die RBF annehmen würde. Wir erstellen eine nutzerdefinierte Signalklasse, die beide Kernel für die Vorhersage von Long- und Short-Bedingungen verwendet.
preview
Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

Neuronale Netze leicht gemacht (Teil 80): Graph Transformer Generative Adversarial Model (GTGAN)

In diesem Artikel werde ich mich mit dem GTGAN-Algorithmus vertraut machen, der im Januar 2024 eingeführt wurde, um komplexe Probleme der Generierung von Architekturlayouts mit Graphenbeschränkungen zu lösen.
preview
Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Neuronale Netze im Handel: Der Contrastive Muster-Transformer (letzter Teil)

Im letzten Artikel dieser Reihe haben wir uns mit dem Atom-Motif Contrastive Transformer (AMCT) beschäftigt, der kontrastives Lernen zur Entdeckung von Schlüsselmustern auf allen Ebenen einsetzt, von grundlegenden Elementen bis hin zu komplexen Strukturen. In diesem Artikel setzen wir die Implementierung von AMCT-Ansätzen mit MQL5 fort.
preview
Integration des AI-Modells in eine bereits bestehende MQL5-Handelsstrategie

Integration des AI-Modells in eine bereits bestehende MQL5-Handelsstrategie

Dieses Thema konzentriert sich auf die Einbindung eines trainierten KI-Modells (z. B. eines Verstärkungslernmodells wie LSTM oder eines auf maschinellem Lernen basierenden Prognosemodells) in eine bestehende MQL5-Handelsstrategie.
preview
Statistische Arbitrage durch Mean Reversion im Paarhandel: Den Markt mit Mathematik schlagen

Statistische Arbitrage durch Mean Reversion im Paarhandel: Den Markt mit Mathematik schlagen

Dieser Artikel beschreibt die Grundlagen der statistischen Arbitrage auf Portfolioebene. Sein Ziel ist es, das Verständnis der Prinzipien der statistischen Arbitrage für Leser ohne tiefgreifende mathematische Kenntnisse zu erleichtern und einen konzeptionellen Rahmen für den Ausgangspunkt vorzuschlagen. Der Artikel enthält einen funktionierenden Expert Advisor, einige Anmerkungen zu seinem einjährigen Backtest und die entsprechenden Backtest-Konfigurationseinstellungen (.ini-Datei) für die Reproduktion des Experiments.
preview
MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

MQL5-Assistent-Techniken, die Sie kennen sollten (Teil 49): Verstärkungslernen mit Optimierung der proximalen Politik

Die „Proximal Policy Optimization“ ist ein weiterer Algorithmus des Reinforcement Learning, der die „Policy“, oft in Form eines Netzwerks, in sehr kleinen inkrementellen Schritten aktualisiert, um die Stabilität des Modells zu gewährleisten. Wir untersuchen, wie dies in einem von einem Assistenten zusammengestellten Expert Advisor von Nutzen sein könnte, wie wir es in früheren Artikeln getan haben.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 41): Deep-Q-Networks

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 41): Deep-Q-Networks

Das Deep-Q-Network ist ein Reinforcement-Learning-Algorithmus, der neuronale Netze bei der Projektion des nächsten Q-Wertes und der idealen Aktion während des Trainingsprozesses eines maschinellen Lernmoduls einsetzt. Wir haben bereits einen alternativen Verstärkungslernalgorithmus, Q-Learning, in Betracht gezogen. Dieser Artikel stellt daher ein weiteres Beispiel dafür vor, wie ein mit Reinforcement Learning trainierter MLP in einer nutzerdefinierten Signalklasse verwendet werden kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 35): Support-Vektor-Regression

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 35): Support-Vektor-Regression

Die Support-Vektor-Regression ist eine idealistische Methode, um eine Funktion oder „Hyperebene“ zu finden, die die Beziehung zwischen zwei Datensätzen am besten beschreibt. Wir versuchen, dies bei der Zeitreihenprognose innerhalb der nutzerdefinierten Klassen des MQL5-Assistenten auszunutzen.
preview
Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 18): Einführung in die Quarters-Theorie (III) - Quarters Board

In diesem Artikel erweitern wir das ursprüngliche Quarters-Skript durch die Einführung des Quarters-Boards, einem Werkzeug, mit dem Sie direkt im Chart zwischen den Viertelstufen umschalten können, ohne den Code erneut aufrufen zu müssen. Sie können ganz einfach bestimmte Levels aktivieren oder deaktivieren, und der EA bietet auch Kommentare zur Trendrichtung, damit Sie Marktbewegungen besser verstehen können.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 32): Regularisierung

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 32): Regularisierung

Die Regularisierung ist eine Form der Bestrafung der Verlustfunktion im Verhältnis zur diskreten Gewichtung, die in den verschiedenen Schichten eines neuronalen Netzes angewendet wird. Wir sehen uns an, welche Bedeutung dies für einige der verschiedenen Regularisierungsformen in Testläufen mit einem vom Assistenten zusammengestellten Expert Advisor haben kann.
preview
MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 33): Gauß-Prozess-Kerne

Gaußsche Prozesskerne sind die Kovarianzfunktion der Normalverteilung, die bei der Vorhersage eine Rolle spielen können. Wir untersuchen diesen einzigartigen Algorithmus in einer nutzerdefinierten Signalklasse von MQL5, um zu sehen, ob er als erstklassiges Einstiegs- und Ausstiegssignal verwendet werden kann.
preview
Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard

Handel mit dem MQL5 Wirtschaftskalender (Teil 4): Implementierung von Echtzeit-Nachrichtenaktualisierungen im Dashboard

Dieser Artikel erweitert unser Wirtschaftskalender-Dashboard durch die Implementierung von Echtzeit-Nachrichten-Updates, um Marktinformationen aktuell und umsetzbar zu halten. Wir integrieren Techniken zum Abrufen von Live-Daten in MQL5, um Ereignisse auf dem Dashboard kontinuierlich zu aktualisieren und die Reaktionsfähigkeit der Schnittstelle zu verbessern. Dieses Update stellt sicher, dass wir direkt über das Dashboard auf die neuesten Wirtschaftsnachrichten zugreifen können, um unsere Handelsentscheidungen auf der Grundlage der aktuellsten Daten zu optimieren.
preview
Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises (2), Polarkoordinaten

Feature Engineering mit Python und MQL5 (Teil II): Winkel des Preises (2), Polarkoordinaten

In diesem Artikel unternehmen wir den zweiten Versuch, die Veränderungen des Preisniveaus auf einem beliebigen Markt in eine entsprechende Veränderung des Winkels umzuwandeln. Diesmal haben wir einen mathematisch anspruchsvolleren Ansatz gewählt als bei unserem ersten Versuch, und die Ergebnisse, die wir erhalten haben, legen nahe, dass unsere Änderung des Ansatzes die richtige Entscheidung war. Diskutieren Sie heute mit uns, wie wir Polarkoordinaten verwenden können, um den Winkel zu berechnen, der durch Veränderungen der Preisniveaus gebildet wird, und zwar auf sinnvolle Weise, unabhängig davon, welchen Markt Sie gerade analysieren.
preview
Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Entwicklung eines Expert Advisors für mehrere Währungen (Teil 19): In Python implementierte Stufen erstellen

Bisher haben wir die Automatisierung des Starts von sequentiellen Verfahren zur Optimierung von EAs ausschließlich im Standard-Strategietester betrachtet. Was aber, wenn wir zwischen diesen Starts die gewonnenen Daten mit anderen Mitteln bearbeiten wollen? Wir werden versuchen, die Möglichkeit hinzuzufügen, neue Optimierungsstufen zu erstellen, die von in Python geschriebenen Programmen ausgeführt werden.
preview
Wie man ein volumenbasiertes Handelssystem aufbaut und optimiert (Chaikin Money Flow - CMF)

Wie man ein volumenbasiertes Handelssystem aufbaut und optimiert (Chaikin Money Flow - CMF)

In diesem Artikel werden wir einen volumenbasierten Indikator, den Chaikin Money Flow (CMF), vorstellen, nachdem wir erläutert haben, wie er konstruiert, berechnet und verwendet werden kann. Wir werden verstehen, wie man einen nutzerdefinierten Indikator erstellt. Wir werden einige einfache Strategien vorstellen, die verwendet werden können, und sie dann testen, um zu verstehen, welche davon besser ist.