
Datenwissenschaft und ML (Teil 36): Der Umgang mit verzerrten Finanzmärkten
Die Finanzmärkte sind nicht vollkommen ausgeglichen. Einige Märkte steigen, andere fallen, und wieder andere zeigen ein gewisses Schwankungsverhalten, das auf Unsicherheit in beide Richtungen hindeutet. Diese unausgewogenen Informationen können beim Trainieren von Machine-Learning-Modellen irreführend sein, da sich die Märkte häufig ändern. In diesem Artikel werden wir verschiedene Möglichkeiten erörtern, dieses Problem zu lösen.

Neuronale Netze leicht gemacht (Teil 90): Frequenzinterpolation von Zeitreihen (FITS)
Durch die Untersuchung der FEDformer-Methode haben wir die Tür zum Frequenzbereich der Zeitreihendarstellung geöffnet. In diesem neuen Artikel werden wir das begonnene Thema fortsetzen. Wir werden uns mit einer Methode befassen, mit der wir nicht nur eine Analyse durchführen, sondern auch spätere Zustände in einem bestimmten Bereich vorhersagen können.

Neuronale Netze im Handel: Hierarchische Vektortransformer (Letzter Teil)
Wir fahren fort mit der Untersuchung der Methode der hierarchischen Vektortransformation. In diesem Artikel werden wir die Konstruktion des Modells abschließen. Wir werden es auch anhand echter historischer Daten trainieren und testen.

Anfragen in Connexus (Teil 6): Erstellen einer HTTP-Anfrage und -Antwort
In diesem sechsten Artikel der Connexus-Bibliotheksreihe befassen wir uns mit einer vollständigen HTTP-Anfrage, wobei jede Komponente, aus der eine Anfrage besteht, behandelt wird. Wir werden eine Klasse erstellen, die den Anfrage als Ganzes repräsentiert, was uns helfen wird, die zuvor erstellten Klassen zusammenzuführen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 53): Market Facilitation Index
Der Market Facilitation Index ist ein weiterer Bill-Williams-Indikator, der die Effizienz der Preisbewegung in Verbindung mit dem Volumen messen soll. Wie immer betrachten wir die verschiedenen Muster dieses Indikators im Rahmen einer Assistentensignalklasse und präsentieren eine Vielzahl von Testberichten und Analysen zu den verschiedenen Mustern.

Neuronale Netze im Handel: Räumlich-zeitliches neuronales Netz (STNN)
In diesem Artikel werden wir über die Verwendung von Raum-Zeit-Transformationen zur effektiven Vorhersage bevorstehender Kursbewegungen sprechen. Um die numerische Vorhersagegenauigkeit in STNN zu verbessern, wird ein kontinuierlicher Aufmerksamkeitsmechanismus vorgeschlagen, der es dem Modell ermöglicht, wichtige Aspekte der Daten besser zu berücksichtigen.

Klassische Strategien neu interpretieren (Teil V): Analyse mehrerer Symbole für USDZAR
In dieser Artikelserie überprüfen wir klassische Strategien, um herauszufinden, ob wir die Strategie mithilfe von KI verbessern können. Im heutigen Artikel werden wir eine beliebte Strategie der Mehrfachsymbolanalyse anhand eines Korbs korrelierter Wertpapiere untersuchen, wobei wir uns auf das exotische Währungspaar USDZAR konzentrieren werden.

Neuronale Netze im Handel: Marktanalyse mit Hilfe eines Muster-Transformers
Wenn wir Modelle zur Analyse der Marktsituation verwenden, konzentrieren wir uns hauptsächlich auf Kerzen. Es ist doch seit langem bekannt, dass Kerzen-Muster bei der Vorhersage künftiger Kursbewegungen helfen können. In diesem Artikel werden wir uns mit einer Methode vertraut machen, die es uns ermöglicht, diese beiden Ansätze zu integrieren.

Integrieren Sie Ihr eigenes LLM in EA (Teil 5): Handelsstrategie mit LLMs entwickeln und testen (III) – Adapter-Tuning
Angesichts der rasanten Entwicklung der künstlichen Intelligenz sind Sprachmodelle (language models, LLMs) heute ein wichtiger Bestandteil der künstlichen Intelligenz, sodass wir darüber nachdenken sollten, wie wir leistungsstarke LLMs in unseren algorithmischen Handel integrieren können. Für die meisten Menschen ist es schwierig, diese leistungsstarken Modelle auf ihre Bedürfnisse abzustimmen, sie lokal einzusetzen und sie dann auf den algorithmischen Handel anzuwenden. In dieser Artikelserie werden wir Schritt für Schritt vorgehen, um dieses Ziel zu erreichen.

Neuronale Netze im Handel: Das „Dual-Attention-Based Trend Prediction Model“
Wir setzen die Diskussion über die Verwendung der stückweisen, linearen Darstellung von Zeitreihen fort, die im vorherigen Artikel begonnen wurde. Heute werden wir sehen, wie diese Methode mit anderen Ansätzen der Zeitreihenanalyse kombiniert werden kann, um die Qualität der Vorhersage des Preistrend zu verbessern.

Neuronale Netze im Handel: Leichtgewichtige Modelle für die Zeitreihenprognose
Leichtgewichtige Modelle zur Zeitreihenprognose erzielen eine hohe Leistung mit einer minimalen Anzahl von Parametern. Dies wiederum reduziert den Rechenaufwand und beschleunigt die Entscheidungsfindung. Trotz ihrer Einfachheit erreichen solche Modelle eine mit komplexeren Modellen vergleichbare Prognosequalität.

Automatisieren von Handelsstrategien in MQL5 (Teil 8): Aufbau eines Expert Advisors mit harmonischen Schmetterlingsmustern
In diesem Artikel bauen wir einen MQL5 Expert Advisor, um harmonische Schmetterlingsmuster zu erkennen. Wir identifizieren Umkehrpunkte und validieren Fibonacci-Levels, um das Muster zu bestätigen. Wir visualisieren dann das Muster auf dem Chart und führen automatisch Handelsgeschäfte aus, wenn es bestätigt wird.

Zyklen im Handel
In diesem Artikel geht es um die Verwendung von Zyklen im Handel. Wir werden den Aufbau einer Handelsstrategie auf der Grundlage zyklischer Modelle in Betracht ziehen.

Einführung in MQL5 (Teil 13): Ein Anfängerleitfaden zur Erstellung nutzerdefinierter Indikatoren (II)
Dieser Artikel führt Sie durch die Erstellung eines nutzerdefinierten Heikin Ashi-Indikators von Grund auf und zeigt Ihnen, wie Sie Ihre nutzerdefinierte Indikatoren in einen EA integrieren können. Es umfasst Indikatorberechnungen, Handelsausführungslogik und Risikomanagementtechniken zur Verbesserung automatisierter Handelsstrategien.

Erforschung fortgeschrittener maschineller Lerntechniken bei der Darvas Box Breakout Strategie
Die von Nicolas Darvas entwickelte Darvas-Box-Breakout-Strategie ist ein technischer Handelsansatz, der potenzielle Kaufsignale erkennt, wenn der Kurs einer Aktie über einen festgelegten Bereich der „Box“ ansteigt, was auf eine starke Aufwärtsdynamik hindeutet. In diesem Artikel werden wir dieses Strategiekonzept als Beispiel anwenden, um drei fortgeschrittene Techniken des maschinellen Lernens zu untersuchen. Dazu gehören die Verwendung eines maschinellen Lernmodells zur Generierung von Signalen anstelle von Handelsfiltern, die Verwendung von kontinuierlichen Signalen anstelle von diskreten Signalen und die Verwendung von Modellen, die auf verschiedenen Zeitrahmen trainiert wurden, um Handelsgeschäfte zu bestätigen.

Automatisieren von Handelsstrategien in MQL5 (Teil 15): Price Action Harmonic Cypher Pattern mit Visualisierung
In diesem Artikel befassen wir uns mit der Automatisierung des harmonischen Cypher-Musters in MQL5 und erläutern seine Erkennung und Visualisierung auf MetaTrader 5-Charts. Wir implementieren einen Expert Advisor, der Umkehrpunkte identifiziert, Fibonacci-basierte Muster validiert und Handelsgeschäfte mit klaren grafischen Kommentaren ausführt. Der Artikel schließt mit einer Anleitung zu den Backtests und zur Optimierung des Programms für einen effektiven Handel.

Datenwissenschaft und ML (Teil 40): Verwendung von Fibonacci-Retracements in Daten des maschinellen Lernens
Fibonacci-Retracements sind ein beliebtes Instrument der technischen Analyse, das Händlern hilft, potenzielle Umkehrzonen zu identifizieren. In diesem Artikel werden wir untersuchen, wie diese Retracement-Levels in Zielvariablen für maschinelle Lernmodelle umgewandelt werden können, damit diese den Markt mit Hilfe dieses leistungsstarken Tools besser verstehen können.

Neuronale Netze im Handel: Stückweise, lineare Darstellung von Zeitreihen
Dieser Artikel unterscheidet sich etwas von meinen früheren Veröffentlichungen. In diesem Artikel werden wir über eine alternative Darstellung von Zeitreihen sprechen. Die stückweise, lineare Darstellung von Zeitreihen ist eine Methode zur Annäherung einer Zeitreihe durch lineare Funktionen über kleine Intervalle.

Der Header im Connexus (Teil 3): Die Verwendung von HTTP-Headern für Anfragen beherrschen
Wir entwickeln die Connexus-Bibliothek weiter. In diesem Kapitel wird das Konzept der Header im HTTP-Protokoll erläutert. Es wird erklärt, was sie sind, wozu sie dienen und wie man sie in Anfragen verwendet. Wir behandeln die wichtigsten Header, die bei der Kommunikation mit APIs verwendet werden, und zeigen praktische Beispiele, wie sie in der Bibliothek konfiguriert werden können.

Implementierung eines Schnellfeuer-Handelsstrategie-Algorithmus mit parabolischem SAR und einfachem gleitenden Durchschnitt (SMA) in MQL5
In diesem Artikel entwickeln wir einen Rapid-Fire Trading Expert Advisor in MQL5, der die Indikatoren Parabolic SAR und Simple Moving Average (SMA) nutzt, um eine reaktionsfähige Handelsstrategie zu erstellen. Wir gehen detailliert auf die Umsetzung der Strategie ein, einschließlich der Verwendung von Indikatoren, der Signalerzeugung sowie des Test- und Optimierungsprozesses.

Analyse mehrerer Symbole mit Python und MQL5 (Teil 3): Dreieck der Wechselkurse
Händler sehen sich oft mit Drawdowns aufgrund falscher Signale konfrontiert, während das Warten auf eine Bestätigung zu verpassten Chancen führen kann. In diesem Artikel wird eine dreieckige Handelsstrategie vorgestellt, die den Silberpreis in Dollar (XAGUSD) und Euro (XAGEUR) zusammen mit dem EURUSD-Wechselkurs verwendet, um das Rauschen herauszufiltern. Durch die Nutzung marktübergreifender Beziehungen können Händler versteckte Stimmungen aufdecken und ihre Eingaben in Echtzeit verfeinern.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 47): Verstärkungslernen mit Temporaler Differenz
Temporal Difference ist ein weiterer Algorithmus des Reinforcement Learning, der Q-Werte auf der Grundlage der Differenz zwischen vorhergesagten und tatsächlichen Belohnungen während des Agententrainings aktualisiert. Sie befasst sich speziell mit der Aktualisierung von Q-Werten, ohne sich um die Verknüpfung von Zustand und Aktion zu kümmern. Daher wollen wir sehen, wie wir dies, wie in früheren Artikeln, in einem mit einem Assistenten zusammengestellten Expert Advisor anwenden können.

Neuronale Netze im Handel: Hyperbolisches latentes Diffusionsmodell (letzter Teil)
Die Verwendung anisotroper Diffusionsprozesse zur Kodierung der Ausgangsdaten in einem hyperbolischen latenten Raum, wie sie im HypDIff-Rahmen vorgeschlagen wird, trägt dazu bei, die topologischen Merkmale der aktuellen Marktsituation zu erhalten und verbessert die Qualität der Analyse. Im vorigen Artikel haben wir damit begonnen, die vorgeschlagenen Ansätze mit MQL5 zu implementieren. Heute werden wir die begonnene Arbeit fortsetzen und zu ihrem logischen Abschluss bringen.

Neuronale Netze im Handel: Szenenspezifische Objekterkennung (HyperDet3D)
Wir laden Sie ein, einen neuen Ansatz zur Erkennung von Objekten mit Hilfe von Hypernetzwerken kennen zu lernen. Ein Hypernetwork generiert Gewichte für das Hauptmodell, wodurch die Besonderheiten der aktuellen Marktsituation berücksichtigt werden können. Dieser Ansatz ermöglicht es uns, die Vorhersagegenauigkeit zu verbessern, indem wir das Modell an unterschiedliche Handelsbedingungen anpassen.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 14): Adaptive Volumenänderung im Risikomanager
Der zuvor entwickelte Risikomanager enthielt nur grundlegende Funktionen. Versuchen wir, mögliche Wege zu seiner Entwicklung zu betrachten, die es uns ermöglichen, die Handelsergebnisse zu verbessern, ohne die Logik der Handelsstrategien zu beeinträchtigen.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 4): Der Analytik Forecaster EA
Wir gehen über die einfache Darstellung von analysierten Metriken in Charts hinaus und bieten eine breitere Perspektive, die auch die Integration von Telegram umfasst. Mit dieser Erweiterung können wichtige Ergebnisse über die Telegram-App direkt auf Ihr mobiles Gerät geliefert werden. Begleiten Sie uns in diesem Artikel auf dieser gemeinsamen Reise.

Entwicklung eines Toolkit zur Analyse von Preisaktionen (Teil 6): Der Mean Reversion Signal Reaper
Während einige Konzepte auf den ersten Blick einfach erscheinen, kann ihre Umsetzung in der Praxis eine ziemliche Herausforderung darstellen. Im folgenden Artikel nehmen wir Sie mit auf eine Reise durch unseren innovativen Ansatz zur Automatisierung eines Expert Advisor (EA), der den Markt mithilfe einer Mean-Reversion-Strategie fachkundig analysiert. Seien Sie dabei, wenn wir die Feinheiten dieses spannenden Automatisierungsprozesses entschlüsseln.

Erstellen eines Handelsadministrator-Panels in MQL5 (Teil IX): Code Organisation (III): Kommunikationsmodul
Nehmen Sie an einer ausführlichen Diskussion über die neuesten Fortschritte im MQL5-Schnittstellendesign teil, wenn wir das neu gestaltete Kommunikations-Panel vorstellen und unsere Serie über den Aufbau des neuen Admin-Panels unter Verwendung von Modularisierungsprinzipien fortsetzen. Wir werden die Klasse CommunicationsDialog Schritt für Schritt entwickeln und ausführlich erklären, wie man sie von der Klasse Dialog erbt. Außerdem werden wir Arrays und die ListView-Klasse in unserer Entwicklung nutzen. Gewinnen Sie umsetzbare Erkenntnisse, um Ihre MQL5-Entwicklungsfähigkeiten zu verbessern - lesen Sie den Artikel und beteiligen Sie sich an der Diskussion im Kommentarbereich!

Neuronale Netze leicht gemacht (Teil 96): Mehrskalige Merkmalsextraktion (MSFformer)
Die effiziente Extraktion und Integration von langfristigen Abhängigkeiten und kurzfristigen Merkmalen ist nach wie vor eine wichtige Aufgabe bei der Zeitreihenanalyse. Ihr richtiges Verständnis und ihre Integration sind notwendig, um genaue und zuverlässige Prognosemodelle zu erstellen.

Erstellen von dynamischen MQL5-Grafikschnittstellen durch ressourcengesteuerte Bildskalierung mit bikubischer Interpolation auf Handelscharts
In diesem Artikel erforschen wir dynamische MQL5-Grafikschnittstellen, die bikubische Interpolation für hochwertige Bildskalierung auf Handelscharts verwenden. Wir stellen flexible Positionierungsoptionen vor, die eine dynamische Zentrierung oder Eckverankerung mit nutzerdefinierten Versätzen ermöglichen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 54): Verstärkungslernen mit hybriden SAC und Tensoren
Soft Actor Critic ist ein Reinforcement Learning-Algorithmus, den wir bereits in einem früheren Artikel vorgestellt haben, in dem wir auch Python und ONNX als effiziente Ansätze für das Training von Netzwerken vorgestellt haben. Wir überarbeiten den Algorithmus mit dem Ziel, Tensoren, Berechnungsgraphen, die häufig in Python verwendet werden, zu nutzen.

Datenwissenschaft und ML (Teil 35): NumPy in MQL5 - Die Kunst, komplexe Algorithmen mit weniger Code zu erstellen
Die NumPy-Bibliothek treibt fast alle Algorithmen des maschinellen Lernens in der Programmiersprache Python an. In diesem Artikel werden wir ein ähnliches Modul implementieren, das eine Sammlung des gesamten komplexen Codes enthält, um uns bei der Erstellung anspruchsvoller Modelle und Algorithmen jeglicher Art zu unterstützen.

Neuronale Netze im Handel: Verwenden von Sprachmodellen für die Zeitreihenprognose
Wir untersuchen weiterhin Modelle zur Zeitreihenprognose. In diesem Artikel machen wir uns mit einem komplexen Algorithmus vertraut, der auf der Verwendung eines vortrainierten Sprachmodells basiert.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 60): Inferenzlernen (Wasserstein-VAE) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir schließen unsere Betrachtung der komplementären Paarung von MA und stochastischem Oszillator ab, indem wir untersuchen, welche Rolle das Inferenzlernen in einer Situation nach überwachtem Lernen und Verstärkungslernen spielen kann. Es gibt natürlich eine Vielzahl von Möglichkeiten, wie man in diesem Fall das Inferenzlernen angehen kann, unser Ansatz ist jedoch die Verwendung von Variationsautokodierern. Wir untersuchen dies in Python, bevor wir unser trainiertes Modell mit ONNX exportieren, um es in einem von einem Assistenten zusammengestellten Expert Advisor in MetaTrader zu verwenden.

Entwicklung eines Expertenberaters für mehrere Währungen (Teil 18): Automatisierte Gruppenauswahl unter Berücksichtigung der Vorwärtszeitraum
Fahren wir fort, die Schritte zu automatisieren, die wir zuvor manuell durchgeführt haben. Diesmal kehren wir zur Automatisierung der zweiten Phase zurück, d. h. zur Auswahl der optimalen Gruppe von Einzelinstanzen von Handelsstrategien, und ergänzen sie durch die Möglichkeit, die Ergebnisse der Instanzen in dem Vorwärtszeitraum zu berücksichtigen.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 62): Nutzung der Muster von ADX und CCI mit Reinforcement-Learning TRPO
Der ADX-Oszillator und der CCI-Oszillator sind Trendfolge- und Momentum-Indikatoren, die bei der Entwicklung eines Expert Advisors miteinander kombiniert werden können. Wir machen dort weiter, wo wir im letzten Artikel aufgehört haben, indem wir untersuchen, wie das Training in der Praxis und die Aktualisierung unseres entwickelten Modells dank des Verstärkungslernens erfolgen kann. Wir verwenden einen Algorithmus, den wir in dieser Serie noch behandeln werden, die sogenannte Trusted Region Policy Optimization (Optimierung vertrauenswürdiger Regionen). Und wie immer erlaubt uns die Zusammenstellung von Expert Advisors durch den MQL5-Assistenten, unser(e) Modell(e) zum Testen viel schneller und auch so einzurichten, dass es mit verschiedenen Signaltypen verteilt und getestet werden kann.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 67): Verwendung von TRIX-Mustern und der Williams Percent Range
Der Triple Exponential Moving Average Oscillator (TRIX) und der Williams Percentage Range Oscillator sind ein weiteres Paar von Indikatoren, die in Verbindung mit einem MQL5 Expert Advisor verwendet werden können. Dieses Indikatorpaar ist, wie die anderen, die wir kürzlich behandelt haben, ebenfalls komplementär, da der TRIX den Trend definiert, während die Williams Percent Range die Unterstützungs- und Widerstandsniveaus bestätigt. Wie immer verwenden wir den MQL5-Assistenten, um das Potenzial dieser beiden zu testen.

Neuronale Netze im Handel: Punktwolkenanalyse (PointNet)
Die direkte Analyse von Punktwolken vermeidet unnötiges Datenwachstum und verbessert die Leistung von Modellen bei Klassifizierungs- und Segmentierungsaufgaben. Solche Ansätze zeigen eine hohe Leistungsfähigkeit und Robustheit gegenüber Störungen in den Originaldaten.

MQL5-Assistenten-Techniken, die Sie kennen sollten (Teil 59): Verstärkungslernen (DDPG) mit gleitendem Durchschnitt und stochastischen Oszillatormustern
Wir setzen unseren letzten Artikel über DDPG mit MA und stochastischen Indikatoren fort, indem wir andere Schlüsselklassen des Reinforcement Learning untersuchen, die für die Implementierung von DDPG entscheidend sind. Obwohl wir hauptsächlich in Python kodieren, wird das Endprodukt, ein trainiertes Netzwerk, als ONNX nach MQL5 exportiert, wo wir es als Ressource in einen von einem Assistenten zusammengestellten Expert Advisor integrieren.

Neuronale Netze im Handel: Knotenadaptive Graphendarstellung mit NAFS
Wir laden Sie ein, sich mit der NAFS-Methode (Node-Adaptive Feature Smoothing) vertraut zu machen, einem nicht-parametrischen Ansatz zur Erstellung von Knotenrepräsentationen, der kein Parametertraining erfordert. NAFS extrahiert Merkmale jedes Knotens anhand seiner Nachbarn und kombiniert diese Merkmale dann adaptiv, um eine endgültige Darstellung zu erstellen.