Машинное обучение и Data Science (Часть 11): Наивный байесовский классификатор и теория вероятностей в трейдинге
Торговлю по вероятностям можно сравнить с ходьбой по канату — она требует точности, баланса и четкого понимания риска. В мире трейдинга вероятность решает все. Именно от нее зависит результат — успех или неудача, прибыль или убыток. Используя возможности вероятности, трейдеры могут принимать более обоснованные решения, эффективнее управлять рисками и достигать своих финансовых целей. Неважно, опытный вы инвестор или начинающий трейдер, понимание вероятности может стать ключом к раскрытию вашего торгового потенциала. В этой статье мы познакомимся с увлекательным миром вероятностного трейдинга и покажем, как вывести игру в торговлю на новый уровень.
Библиотека для простого и быстрого создания программ для MetaTrader (Часть X): Совместимость с MQL4 - События открытия позиции и активации отложенных ордеров
В предыдущих статьях мы начали создавать большую кроссплатформенную библиотеку, целью которой является упростить написание программ для платформ MetaTrader 5 и MetaTrader 4. В девятой части начали дорабатывать классы библиотеки для работы в MQL4. В данной статье продолжим доработку библиотеки с целью полной её совместимости с MQL4.
Дискретное преобразование Хартли
В этой статье мы познакомимся с одним из методов спектрального анализа и обработки сигналов - дискретным преобразованием Хартли. С его помощью можно фильтровать сигналы, анализировать их спектр и многое другое. Возможности DHT ничуть не меньше, чем у дискретного преобразования Фурье. Однако, в отличие от него, DHT использует только вещественные числа, что делает его более удобным для реализации на практике, а результаты его применения более наглядными.
Высокочастотная арбитражная торговая система на Python с использованием MetaTrader 5
Создаем легальную в глазах брокеров арбитражную систему, которая создает тысячи синтетических цен на рынке Форекс, анализирует их, и успешно торгует в прибыль.
Кросс-валидация и основы причинно-следственного вывода в моделях CatBoost, экспорт в ONNX формат
В данной статье предложен авторский способ создания ботов с использованием машинного обучения.
Причинно-следственный вывод в задачах классификации временных рядов
В этой статье мы рассмотрим теорию причинно-следственного вывода с применением машинного обучения, а также реализацию авторского подхода на языке Python. Причинно-следственный вывод и причинно-следственное мышление берут свои корни в философии и психологии, это важная часть нашего способа мыслить эту реальность.
Возможности Мастера MQL5, которые вам нужно знать (Часть 1): Регрессионный анализ
Современный трейдер почти всегда сознательно или бессознательно находится в поиске новых идей. Он постоянно пробует новые стратегии, модифицирует их и отбрасывает те, что не оправдали себя. Этот исследовательский процесс требует много времени и сопряжен с ошибками. В этой серии статей я постараюсь доказать, что Мастер MQL5 является настоящей опорой трейдера. Благодаря Мастеру, трейдер экономит время при реализации своих идей. Кроме того, снижается вероятность ошибок, возникающих при дублировании кода. Вместо того чтобы тратить время на оформление кода, трейдеры претворяют в жизнь свою торговую философию.
Популяционные алгоритмы оптимизации: Гармонический поиск (Harmony Search — HS)
Сегодня изучим и протестируем мощнейший алгоритм оптимизации - гармонический поиск (HS), который инспирирован процессом поиска идеальной звуковой гармонии. И какой же алгоритм теперь лидер в нашем рейтинге?
Работа с таймсериями в библиотеке DoEasy (Часть 43): Классы объектов индикаторных буферов
В статье рассмотрим создание классов объектов-индикаторных буферов как наследников абстрактного объекта-буфера, упрощающих объявление и работу с индикаторными буферами при создании собственных программ-индикаторов на основе библиотеки DoEasy.
Работа с таймсериями в библиотеке DoEasy (Часть 55): Класс-коллекция индикаторов
В статье продолжим развитие классов объектов-индикаторов и их коллекции. Создадим для каждого объекта-индикатора его описание и скорректируем класс-коллекцию для безошибочного хранения и получения объектов-индикаторов из списка-коллекции.
Утилита для отбора и навигации на MQL5 и MQL4: добавляем вкладки "домашки" и сохраняем графические объекты
В данной статье мы расширим возможности ранее созданной утилиты, добавив в нее вкладки для отбора нужных нам инструментов. Также мы научимся сохранять графические объекты, которые мы создали на графике определенного инструмента, чтобы постоянно их не создавать повторно. И даже научимся работать только с инструментами, которые были предварительно выбраны с помощью с нужного нам сайта.
Работа с ценами в библиотеке DoEasy (Часть 59): Объект для хранения данных одного тика
С данной статьи приступим к созданию функционала библиотеки для работы с ценовыми данными. Сегодня создадим класс объекта, который будет хранить в себе все данные цен, пришедшие с очередным тиком.
Нейросети — это просто (Часть 25): Практикум Transfer Learning
В последних двух статьях мы создали инструмент, позволяющий создавать и редактировать модели нейронных сетей. И теперь пришло время оценить потенциальные возможности использования технологии Transfer Learning на практических примерах.
Работа с таймсериями в библиотеке DoEasy (Часть 57): Объект данных буфера индикатора
В статье разработаем объект, который будет содержать в себе все данные одного буфера одного индикатора. Такие объекты потребуются для хранения серийных данных буферов индикаторов, и с помощью которых возможно будет сортировать и сравнивать данные буферов любых индикаторов и других схожих данных между собой.
Нейросети — это просто (Часть 34): Полностью параметризированная квантильная функция
Продолжаем изучение алгоритмов распределенного Q-обучения. В предыдущих статьях мы рассмотрели алгоритмы распределенного и квантильного Q-обучения. В первом мы учили вероятности заданных диапазонов значений. Во втором учили диапазоны с заданной вероятностью. И в первом, и во втором алгоритме мы использовали априорные знания одного распределения и учили другое. В данной статье мы рассмотрим алгоритм, позволяющей модели учить оба распределения.
Разработка робота на Python и MQL5 (Часть 2): Выбор модели, создание и обучение, кастомный тестер Python
Продолжаем цикл статей по созданию торгового робота на Python и MQL5. Сегодня решим задачу выбора и обучения модели, ее тестирования, внедрения кросс-валидации, поиска по сетке, а также задачу ансамблирования моделей.
Прочие классы в библиотеке DoEasy (Часть 70): Расширение функционала и автообновление коллекции объектов-чартов
В статье расширим функционал объектов-чартов, организуем навигацию по графикам, создание скриншотов, сохранение и применение шаблонов к графикам. Также сделаем автоматическое обновление коллекции объектов-чартов, их окон и индикаторов в них.
Алгоритмическая торговля на основе 3D-паттернов разворота
Открываем новый мир автоматической торговли на 3D-барах. Как выглядит торговый робот на многомерных барах цены, и могут ли "желтые" кластеры 3D-баров предсказывать развороты трендов? Как выглядит трейдинг в множестве измерений?
Популяционные алгоритмы оптимизации: Алгоритм гравитационного поиска (Gravitational Search Algorithm - GSA)
GSA — популяционный алгоритм оптимизации, инспирированный неживой природой. Высокая достоверность моделирования взаимодействия физических тел, благодаря закону гравитации Ньютона в алгоритме, позволяет наблюдать феерический танец планетарных систем и галактических скоплений, который завораживает своим представлением на анимации. Сегодня рассмотрим один из самых интересных и оригинальных алгоритмов оптимизации. Симулятор движения космических объектов прилагается.
Работа с ценами в библиотеке DoEasy (Часть 63): Стакан цен, класс абстрактной заявки стакана цен
В статье начнём разработку функционала для работы со стаканом цен. Создадим класс объекта абстрактной заявки стакана цен и его наследников.
Машинное обучение и Data Science. Нейросети (Часть 02): архитектура нейронных сетей с прямой связью
В предыдущей статье мы начали изучать нейросети с прямой связью, однако остались неразобранными некоторые моменты. Один из них — проектирование архитектуры. Поэтому в этой статье мы рассмотрим, как спроектировать гибкую нейронную сеть с учетом входных данных, количества скрытых слоев и узлов для каждой сети.
Популяционные алгоритмы оптимизации: Алгоритм имитации отжига (Simulated Annealing, SA). Часть I
Алгоритм имитации отжига (Simulated Annealing) является метаэвристикой, вдохновленной процессом отжига металлов. В нашей статье проведем тщательный анализ алгоритма и покажем, как многие распространенные представления и мифы, вокруг этого наиболее популярного и широко известного метода оптимизации, могут быть ошибочными и неполными. Анонс второй части статьи: "Встречайте собственный авторский алгоритм имитации изотропного отжига (Simulated Isotropic Annealing, SIA)!"
Python, ONNX и MetaTrader 5: Создаем модель RandomForest с предварительной обработкой данных RobustScaler и PolynomialFeatures
В этой статье мы создадим модель случайного леса на языке Python, обучим модель и сохраним ее в виде конвейера ONNX с препроцессингом данных. Модель мы далее используем в терминале MetaTrader 5.
Работа с таймсериями в библиотеке DoEasy (Часть 48): Мультипериодные мультисимвольные индикаторы на одном буфере в подокне
В статье рассмотрим пример создания мультисимвольных мультипериодных стандартных индикаторов, использующих для своих построений один индикаторный буфер, и работающих в подокне графика. Подготовим классы библиотеки для работы со стандартными индикаторами, работающими в основном окне программы, или имеющими более одного буфера для вывода своих данных.
Торговля по алгоритму: ИИ и его путь к золотым вершинам
В данной статье продемонстрирован подход к созданию торговых стратегий для золота с помощью машинного обучения. Рассматривая предложенный подход к анализу и прогнозированию временных рядов с разных ракурсов, можно определить его преимущества и недостатки по сравнению с другими способами создания торговых систем, основанных исключительно на анализе и прогнозировании финансовых временных рядов.
Машинное обучение и Data Science (Часть 13): Анализируем финансовый рынок с помощью метода главных компонент (PCA)
Попробуем качественно улучшить анализ финансовых рынков с помощью метода главных компонент (Principal Component Analysis, PCA). Узнаем, как этот метод может помочь выявлять скрытые закономерности в данных, определять скрытые рыночные тенденции и оптимизировать инвестиционные стратегии. В этой статье мы посмотрим, как метод PCA дает новую перспективу для анализа сложных финансовых данных, помогая увидеть идеи, которые мы упустили при использовании традиционных подходов. Дает ли применение метода PCA на данных финансовых рынков конкурентное преимущество и поможет ли быть на шаг впереди?
Модифицированный советник Grid-Hedge в MQL5 (Часть I): Создание простого хеджирующего советника
Мы будем создавать простой хеджирующий советник в качестве основы для нашего более продвинутого советника Grid-Hedge, который будет представлять собой смесь классической сетки и классических стратегий хеджирования. К концу этой статьи вы узнаете, как создать простую стратегию хеджирования, а также что говорят люди о прибыльности этой стратегии.
Создаем 3D-бары на основе времени, цены и объема
Что такое многомерные 3D-графики цен и как они создаются. Как 3D-бары предсказывают развороты цены, и как Python и MetaTrader 5 позволяют строить эти объемные бары в режиме реального времени.
Брутфорс-подход к поиску закономерностей (Часть VI): Циклическая оптимизация
В этой статье я покажу первую часть доработок, которые позволили мне не только замкнуть всю цепочку автоматизации для торговли в MetaTrader 4 и 5, но и сделать что-то гораздо интереснее. Отныне данное решение позволяет мне полностью автоматизировать как процесс создания советников, так и процесс оптимизации, а также минимизировать трудозатраты на поиск эффективных торговых конфигураций.
Модифицированный советник Grid-Hedge в MQL5 (Часть II): Создание простого сеточного советника
В статье рассматривается классическая сеточная стратегия, подробно описана ее автоматизация с помощью советника на MQL5 и проанализированы первоначальные результаты тестирования на истории. Также подчеркивается необходимость в долгом удержании позиций и рассматривается возможность оптимизации ключевых параметров (таких как расстояние, тейк-профит и размеры лотов) в будущих частях. Целью этой серии статей является повышение эффективности торговой стратегии и ее адаптируемости к различным рыночным условиям.
Освоение ONNX: Переломный момент для MQL5-трейдеров
Погрузитесь в мир ONNX - мощного открытого формата для обмена моделями машинного обучения. Узнайте, как использование ONNX может произвести революцию в алгоритмической торговле на MQL5, позволяя трейдерам беспрепятственно интегрировать передовые модели искусственного интеллекта и поднять свои стратегии на новый уровень. Раскройте секреты кросс-платформенной совместимости и узнайте, как раскрыть весь потенциал ONNX в своей торговле на MQL5. Улучшите свою торговлю с помощью этого подробного руководства по ONNX.
Эконометрические инструменты для прогнозирования волатильности: Модель GARCH
В статье дается описание свойств нелинейной модели условной гетероскедастичности(GARCH). На ее основе построен индикатор iGARCH для прогнозирования волатильности на один шаг вперед. Для оценки параметров модели используется библиотека численного анализа ALGLIB.
Работа с ценами в библиотеке DoEasy (Часть 62): Реалтайм-обновление тиковых серий, подготовка к работе со стаканом цен
В статье сделаем реалтайм-обновление коллекции тиковых данных и подготовим класс объекта-символа для работы со стаканом цен, работу над которым начнём со следующей статьи.
Машинное обучение и Data Science (Часть 04): Предсказание биржевого краха
В этой статье я попытаюсь использовать нашу логистическую модель, чтобы спрогнозировать крах фондового рынка на основе главнейших акций для экономики США: NETFLIX и APPLE. Мы проанализируем эти акции, будем использовать информацию о предыдущих падениях рынка 2019 и 2020 годов. Посмотрим, как наша модель будет работать в нынешних мрачных условиях.
Алгоритм кодового замка (Сode Lock Algorithm, CLA)
В этой статье мы переосмыслим кодовые замки, превращая их из механизмов защиты в инструменты для решения сложных задач оптимизации. Откройте для себя мир кодовых замков, не как простых устройств безопасности, но как вдохновения для нового подхода к оптимизации. Мы создадим целую популяцию "замков", где каждый замок представляет собой уникальное решение задачи. Затем мы разработаем алгоритм, который будет "вскрывать" эти замки и находить оптимальные решения в самых разных областях, от машинного обучения до разработки торговых систем.
Популяционные алгоритмы оптимизации: Алгоритм растущих деревьев (Saplings Sowing and Growing up — SSG)
Алгоритм растущих деревьев (Saplings Sowing and Growing up, SSG) вдохновлен одним из самых жизнестойких организмов на планете, который является замечательным образцом выживания в самых различных условиях.
Алгоритм докупки: симуляция мультивалютной торговли
В данной статье мы создадим математическую модель для симуляции мультивалютного ценообразования и завершим исследование принципа диверсификации в рамках поиска механизмов увеличения эффективности торговли, которое я начал в предыдущей статье с теоретических выкладок.
Нейросети — это просто (Часть 16): Практическое использование кластеризации
В предыдущей статье мы построили класс для кластеризации данных. В этой статье я хочу с вами поделиться вариантами возможного использования полученных результатов для решения практических задач трейдинга.
Понимание и эффективное использование тестера стратегий MQL5
MQL5-разработчикам крайне необходимо освоить важные и ценные инструменты. Одним из таких инструментов является тестер стратегий. Статья представляет собой практическое руководство по использованию тестера стратегий MQL5.
Работа с матрицами, расширение функционала Стандартной библиотеки матриц и векторов
Матрица служит основой алгоритмов машинного обучения и компьютеров в целом из-за ее способности эффективно обрабатывать большие математические операции. В Стандартной библиотеке есть все, что нужно, но мы можем расширить ее, добавив несколько функций в файл utils.