Статьи об анализе данных и статистике в MQL5

icon

Статьи на темы математических моделей и законов вероятности заинтересуют многих трейдеров. Ведь математика положена в основу технических индикаторов, а знание статистики необходимо для анализа результатов торговли и разработки стратегий.

Читайте о нечеткой логике, цифровых фильтрах, рыночном профиле, картах Кохонена, нейронном газе и многих других инструментах, которые могут использованы для торговли.

Новая статья
последние | лучшие
preview
Применение ассоциативных правил для анализа данных на Форексе

Применение ассоциативных правил для анализа данных на Форексе

Как применить предиктивные правила ретейл-аналитики супермаркетов к реальному рынку Форекс? Как связаны покупки печенья, молока и хлеба с транзакциями на бирже? В статье рассматривается инновационный подход к алгоритмическому трейдингу, основанный на применении ассоциативных правил.
preview
Разработка системы репликации (Часть 34): Система ордеров (III)

Разработка системы репликации (Часть 34): Система ордеров (III)

В этой статье мы завершим первый этап конструкции. Несмотря на то, что это выполняется довольно быстро, я расскажу о деталях, которые не обсуждались ранее. Но здесь я объясню некоторые моменты, которые многие не понимают. Например, знаете ли вы, почему вам приходится нажимать клавишу Shift или Ctrl на клавиатуре?
preview
Разработка системы репликации (Часть 35): Внесение корректировок (I)

Разработка системы репликации (Часть 35): Внесение корректировок (I)

Прежде чем мы сможем двигаться дальше, нам нужно исправить несколько моментов. Но это не обязательные исправления, а улучшение в способе управления и использования класса. Причина в том, что сбои происходят из-за какого-то взаимодействия внутри системы. Несмотря на попытки узнать причину некоторых неудач, для их последующего устранения, все эти попытки оказались безуспешными, поскольку некоторые из них не имели смысла. Когда мы используем указатели или рекурсию в C / C++, программа аварийно завершается.
preview
Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели

Самооптимизирующийся советник на языках MQL5 и Python (Часть V): Глубокие марковские модели

Мы применим простую цепь Маркова к индикатору RSI, чтобы наблюдать за поведением цены после того, как индикатор проходит через ключевые уровни. Мы пришли к выводу, что самые сильные сигналы на покупку и продажу по паре NZDJPY генерируются, когда RSI находится в диапазоне 11–20 и 71–80 соответственно. Мы покажем, как можно манипулировать данными, чтобы создавать оптимальные торговые стратегии, основанные непосредственно на имеющихся данных. Кроме того, мы продемонстрируем, как обучить глубокую нейронную сеть оптимальному использованию матрицы перехода.
preview
Алгоритм дуэлянта — Duelist Algorithm

Алгоритм дуэлянта — Duelist Algorithm

Что если бы ваши торговые стратегии могли учиться друг у друга, как настоящие бойцы? Duelist Algorithm — новый метод оптимизации, где параметры торговых систем буквально сражаются в дуэлях за право называться лучшими.
preview
Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

Наиболее известные модификации алгоритма искусственного кооперативного поиска (Artificial Cooperative Search, ACSm)

В данной статье рассмотрим эволюцию алгоритма ACS: три модификации в направлении улучшения характеристик сходимости и результативности алгоритма. Трансформация одного из ведущих алгоритмов оптимизации. От модификаций матриц до революционных подходов к формированию популяций.
preview
Методы дискретизации ценовых движений на Python

Методы дискретизации ценовых движений на Python

Мы рассмотрим методы дискретизации цен на Python + MQL5. В этой статье я поделюсь практическим опытом разработки библиотеки на Python, которая реализует целый спектр подходов к формированию баров — от классических Volume и Range bars до более экзотических методов вроде Renko и Kagi.ары, свечи трехлинейного прорыва, рэйндж бары — какова их статистика, как еще можно представить цены дискретно?
preview
Применение Grey-модели в техническом анализе финансовых временных рядов

Применение Grey-модели в техническом анализе финансовых временных рядов

Данная статья посвящена изучению grey-модели — перспективного инструмента, способного расширить возможности трейдера. Мы рассмотрим некоторые варианты применения этой модели для технического анализа и построения торговых стратегий.
preview
Система самообучения с подкреплением для алгоритмической торговли на MQL5

Система самообучения с подкреплением для алгоритмической торговли на MQL5

В статье создаётся многоагентная система машинного обучения для алгоритмической торговли на MetaTrader 5 на основе обучения с подкреплением. Система имеет трёхуровневую архитектуру: нейроны памяти хранят опыт, агенты принимают независимые решения, коллективный разум объединяет их через взвешенное голосование. Система непрерывно совершенствуется через Q-обучение, прунинг неэффективных нейронов и эволюционное снижение исследования.
preview
Разработка системы репликации - Моделирование рынка (Часть 05): Предварительный просмотр

Разработка системы репликации - Моделирование рынка (Часть 05): Предварительный просмотр

Нам удалось разработать способ осуществления репликации рынка достаточно реалистичным и доступным образом. Теперь давайте продолжим наш проект и добавим данные для улучшения поведения репликации.
preview
Базовый класс популяционных алгоритмов как основа эффективной оптимизации

Базовый класс популяционных алгоритмов как основа эффективной оптимизации

Уникальная исследовательская попытка объединения разнообразных популяционных алгоритмов в единый класс с целью упрощения применения методов оптимизации. Этот подход не только открывает возможности для разработки новых алгоритмов, включая гибридные варианты, но и создает универсальный базовый стенд для тестирования. Этот стенд становится ключевым инструментом для выбора оптимального алгоритма в зависимости от конкретной задачи.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 18): Поиск нейронной архитектуры с использованием собственных векторов

Возможности Мастера MQL5, которые вам нужно знать (Часть 18): Поиск нейронной архитектуры с использованием собственных векторов

Поиск нейронной архитектуры (Neural Architecture Search), автоматизированный подход к определению идеальных настроек нейронной сети, может стать преимуществом при наличии большого количества вариантов и больших наборов тестовых данных. Здесь мы рассмотрим, как этот подход можно сделать еще более эффективным с помощью парных собственных векторов (Eigen Vectors).
preview
Разработка системы репликации - Моделирование рынка (Часть 07): Первые улучшения (II)

Разработка системы репликации - Моделирование рынка (Часть 07): Первые улучшения (II)

В предыдущей статье мы внесли исправления в некоторые моменты и добавили тесты в нашу систему репликации для обеспечения максимально возможной стабильности. Мы также начали создавать и использовать конфигурационный файл для данной системы.
preview
Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python

Связь торговых роботов MetaTrader 5 с внешними брокерами через API и Python

В настоящей статье мы обсудим реализацию MQL5 в партнерстве с Python для выполнения связанных с брокером операций. Представьте, что у вас есть постоянно работающий советник (EA), размещенный на VPS и совершающий сделки от вашего имени. В какой-то момент способность советника управлять средствами становится первостепенной. Она включает в себя такие операции, как пополнение вашего торгового счета и инициирование вывода средств. В данном обсуждении мы прольем свет на преимущества и практическую реализацию этих функций, обеспечивающих плавную интеграцию управления средствами в вашу торговую стратегию. Следите за обновлениями!
preview
Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Разработка инструментария для анализа движения цен (Часть 6): Возврат к среднему значению

Хотя некоторые концепции на первый взгляд кажутся простыми, воплотить их в жизнь на практике может быть довольно сложно. В статье ниже мы рассмотрим инновационный подход к автоматизации советника, который анализирует рынок, используя стратегию возврата к среднему значению.
preview
Комбинаторно-симметричная перекрестная проверка в MQL5

Комбинаторно-симметричная перекрестная проверка в MQL5

В статье показана реализация комбинаторно-симметричной перекрестной проверки на чистом MQL5 для измерения степени подгонки после оптимизации стратегии с использованием медленного полного алгоритма тестера стратегий.
preview
Матричная факторизация: моделирование, которое более практично

Матричная факторизация: моделирование, которое более практично

Вы могли не заметить, что моделирование матриц оказалось немного странным, так как указывались не строки и столбцы, а только столбцы. Это выглядит очень странно при чтении кода, выполняющего матричные факторизации. Если вы ожидали увидеть указанные строки и столбцы, то могли бы запутаться при попытке выполнить факторизацию. Более того, данный способ моделирования матриц не самый лучший. Это связано с тем, что когда мы моделируем матрицы таким образом, то сталкиваемся с некими ограничениями, которые заставляют нас использовать другие методы или функции, которые не были бы необходимы, если бы моделирование осуществлялось более подходящим способом.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Возможности Мастера MQL5, которые вам нужно знать (Часть 21): Тестирование с данными экономического календаря

Данные экономического календаря по умолчанию недоступны для тестирования с помощью советников в тестере стратегий. Мы рассмотрим, как базы данных могут помочь обойти это ограничение. В частности, мы увидим, как можно использовать базы данных SQLite для архивирования новостей Экономического календаря, чтобы советники, собранные с помощью Мастера, могли использовать их для генерации торговых сигналов.
preview
Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Реализация квантовой схемы Quantum Reservoir Computing (QRC)

Революционный подход к машинному обучению в трейдинге через квантовые вычисления. Статья демонстрирует практическую реализацию адаптивной системы QRC с постоянным дообучением для прогнозирования рыночных движений в реальном времени.
preview
Разработка системы репликации (Часть 73): Неожиданный способ оповещений (II)

Разработка системы репликации (Часть 73): Неожиданный способ оповещений (II)

В этой статье мы рассмотрим, как передавать информацию в режиме реального времени между индикатором и сервисом, а также разберемся, почему могут возникнуть проблемы при изменении таймфрейма и как их решать. В качестве бонуса вы получите доступ к последней версии приложения репликации/моделирования.
preview
Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

Нейросети в трейдинге: Ансамбль агентов с использованием механизмов внимания (Окончание)

В предыдущей статье мы познакомились с мультиагентным адаптивным фреймворком MASAAT, который использует ансамбль агентов для перекрестного анализа мультимодального временного ряда в разных масштабах представления данных. И сегодня мы доведем до логического завершения начатую ранее работу по реализации подходов данного фреймворка средствами MQL5.
preview
Разработка инструментария для анализа движения цен (Часть 11): Советник Heikin Ashi Signal

Разработка инструментария для анализа движения цен (Часть 11): Советник Heikin Ashi Signal

MQL5 предлагает безграничные возможности для разработки автоматизированных торговых систем, отвечающих вашим предпочтениям. Знаете ли вы, что он даже может выполнять сложные математические вычисления? В этой статье мы представим японский метод Heikin Ashi (Хейкен Аши) в виде автоматизированной торговой стратегии.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 33): Ядра гауссовского процесса

Возможности Мастера MQL5, которые вам нужно знать (Часть 33): Ядра гауссовского процесса

Ядра гауссовского процесса (Gaussian Process Kernels) — это ковариационная функция нормального распределения, которая может быть использована в прогнозировании. Мы исследуем этот уникальный алгоритм в пользовательском классе сигналов MQL5, чтобы увидеть, можно ли использовать его в качестве основного сигнала входа и выхода.
preview
Разработка системы репликации (Часть 31): Проект советника — класс C_Mouse (V)

Разработка системы репликации (Часть 31): Проект советника — класс C_Mouse (V)

Разрабатывать способ установки таймера необходимо таким образом, чтобы во время репликации/моделирования он мог сообщить нам, сколько времени осталось, что может показаться на первый взгляд простым и быстрым решением. Многие просто пытаются приспособиться и использовать ту же систему, что и в случае с торговым сервером. Но есть один момент, который многие не учитывают, когда думают о таком решении: при репликации, и это не говоря уже о моделировании, часы работают по-другому. Всё это усложняет создание подобной системы.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 16): Метод главных компонент с собственными векторами

Возможности Мастера MQL5, которые вам нужно знать (Часть 16): Метод главных компонент с собственными векторами

В статье рассматривается метод главных компонент — метод снижения размерности при анализе данных, а также то, как его можно реализовать с использованием собственных значений и векторов. Как всегда, мы попытаемся разработать прототип класса сигналов советника, который можно будет использовать в Мастере MQL5.
preview
Разработка системы репликации - Моделирование рынка (Часть 24): FOREX (V)

Разработка системы репликации - Моделирование рынка (Часть 24): FOREX (V)

Сегодня мы снимем ограничение, которое препятствовало выполнению моделирований, основанных на построении LAST, и введем новую точку входа специально для этого типа моделирования. Обратите внимание на то, что весь механизм работы будет основан на принципах валютного рынка. Основное различие в данной процедуре заключается в разделении моделирований BID и LAST. Однако важно отметить, что методология, используемая при рандомизации времени и его корректировке для совместимости с классом C_Replay, остается идентичной в обоих видах моделирования. Это хорошо, поскольку изменения в одном режиме приводят к автоматическим улучшениям в другом, особенно если это касается обработки времени между тиками.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 36): Q-обучение с цепями Маркова

Возможности Мастера MQL5, которые вам нужно знать (Часть 36): Q-обучение с цепями Маркова

Обучение с подкреплением — один из трех основных принципов машинного обучения, наряду с обучением с учителем и без учителя. Поэтому возникает необходимость в оптимальном управлении или изучении наилучшей долгосрочной политики, которая наилучшим образом соответствует целевой функции. Именно на этом фоне мы исследуем его возможную роль в информировании процесса обучения MLP советника, собранного в Мастере.
preview
Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель

Анализируем двоичный код цен на бирже (Часть II): Преобразуем в BIP39 и пишем GPT модель

Продолжаем попытки дешифровать движения цен... Как насчет лингвистического анализа "словаря рынка", который мы получим, преобразовав бинарный код цены в BIP39? В этой статье мы углубимся в инновационный подход к анализу биржевых данных и рассмотрим, как современные методы обработки естественного языка могут быть применены к языку рынка.
preview
Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Алгоритм выбора признаков с использованием энергетического обучения на чистом MQL5

Статья представляет реализацию алгоритма выбора признаков, описанного в научной работе "FREL: Стабильный алгоритм выбора признаков" (FREL: A stable feature selection algorithm). Сам алгоритм называется "Взвешивание признаков как регуляризованное обучение на основе энергии" (Feature weighting as regularized energy based learning).
preview
Разработка системы репликации - Моделирование рынка (Часть 03):  Внесение корректировок (I)

Разработка системы репликации - Моделирование рынка (Часть 03): Внесение корректировок (I)

Начнем с прояснения нынешней ситуации, потому что мы начали не самым лучшим образом. Если не сделать этого сейчас, то вскоре мы окажемся в беде.
preview
Разработка системы репликации (Часть 40): Начало второй фазы (I)

Разработка системы репликации (Часть 40): Начало второй фазы (I)

Сегодня поговорим о новой фазе системы репликации/моделирования. На данном этапе разговор станет поистине интересным, а содержанием довольно насыщенным. Я настоятельно рекомендую вам внимательно прочитать статью и пользоваться приведенными в ней ссылками. Это поможет вам лучше понять содержание.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 44): Технический индикатор Average True Range (ATR)

Возможности Мастера MQL5, которые вам нужно знать (Часть 44): Технический индикатор Average True Range (ATR)

Осциллятор ATR — очень популярный индикатор, используемый в качестве индикатора волатильности, особенно на валютных рынках, где данные об объемах скудны. Как и в случае с предыдущими индикаторами, мы рассмотрим паттерны и поделимся стратегиями и отчетами о тестировании.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Возможности Мастера MQL5, которые вам нужно знать (Часть 13): DBSCAN для класса сигналов советника

Основанная на плотности пространственная кластеризация для приложений с шумами (Density Based Spatial Clustering for Applications with Noise, DBSCAN) - это неконтролируемая форма группировки данных, которая практически не требует каких-либо входных параметров, за исключением всего двух, что по сравнению с другими подходами, такими как k-средние, является преимуществом. Разберемся в том, как это может быть полезно в тестировании и торговле с применением советников, собранных в Мастере.
preview
Разработка системы репликации - Моделирование рынка (Часть 09): Пользовательские события

Разработка системы репликации - Моделирование рынка (Часть 09): Пользовательские события

Здесь мы увидим, как активировать пользовательские события и проработать вопрос о том, как индикатор сообщает о состоянии сервиса репликации/моделирования.
preview
Возможности Мастера MQL5, которые вам нужно знать (Часть 24): Скользящие средние

Возможности Мастера MQL5, которые вам нужно знать (Часть 24): Скользящие средние

Скользящие средние — очень распространенный индикатор, который используют и понимают большинство трейдеров. Мы рассмотрим возможные варианты их использования, которые относительно редко используются в советниках, собранных с помощью Мастера MQL5.
preview
Разработка системы репликации (Часть 39): Прокладываем путь (III)

Разработка системы репликации (Часть 39): Прокладываем путь (III)

Прежде, чем приступить ко второму этапу разработки, необходимо закрепить несколько идей. Знаете ли вы, как заставить MQL5 делать то, что вам необходимо? Пытались ли когда-нибудь выйти за рамки того, что содержится в документации? Если нет, то приготовьтесь. Потому что прямо сейчас мы будем делать то, чем большинство людей обычно не занимается.
preview
Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

Применение модели машинного обучения CatBoost в качестве фильтра для трендовых стратегий

CatBoost – это эффективная модель машинного обучения на основе деревьев, которая специализируется на принятии решений на основе статических признаков. Другие модели на основе деревьев, такие как XGBoost и Random Forest, обладают схожими характеристиками в плане надежности, интерпретируемости и способности работать со сложными паттернами. Эти модели имеют широкий спектр применения: от анализа признаков до управления рисками. В данной статье мы пройдемся по процедуре использования обученной модели CatBoost в качестве фильтра для классической трендовой стратегии на основе пересечения скользящих средних.
preview
Разработка системы репликации (Часть 43): Проект Chart Trade (II)

Разработка системы репликации (Часть 43): Проект Chart Trade (II)

Большинство людей, которые хотят или мечтают научиться программировать, на самом деле не имеют представления о том, что делают. Их деятельность заключается в попытках создавать вещи определенным образом. Однако программирование – это вовсе не подгонка под ответ подходящих решений. Если действовать таким образом, можно создать больше проблем, чем решений. Здесь мы будем делать нечто более продвинутое и, следовательно, другое.
preview
Форекс советник на нейросети N-BEATS Network

Форекс советник на нейросети N-BEATS Network

Реализация архитектуры N-BEATS для форекс-трейдинга в MetaTrader 5 с квантильным прогнозированием и адаптивным риск-менеджментом. Архитектура адаптирована через билинейную нормализацию и специализированные функции потерь для финансовых данных. Тестирование на данных 2025 года показало неспособность генерировать прибыль, подтверждая разрыв между теоретическими достижениями и практической торговой эффективностью.
preview
Разработка системы репликации (Часть 36): Внесение корректировок (II)

Разработка системы репликации (Часть 36): Внесение корректировок (II)

Одна из вещей, которая может усложнить нашу жизнь как программистов, - это предположения. В этой статье я покажу вам, как опасно делать предположения: как в части программирования на MQL5, где принимается, что у курса будет определенная величина, так и при использовании MetaTrader 5, где принимается, что разные серверы работают одинаково.