Метод группового учета аргументов: реализация многослойного итерационного алгоритма на MQL5
В этой статье мы описываем реализацию Многослойного итерационного алгоритма как метода группового учета аргументов на языке MQL5.
Угловой анализ ценовых движений: гибридная модель прогнозирования финансовых рынков
Что такое угловой анализ финансовых рынков? Как использовать углы движения цен и машинное обучение для точного прогнозирования с точностью 67? Как совместить регрессионную и классификационную модель с угловыми признаками и получить работающий алгоритм? Причем тут Ганн? Почему углы движения цен являются хорошим признаком для машинного обучения?
Машинное обучение и Data Science (Часть 20): Выбор между LDA и PCA в задачах алготрейдинга на MQL5
В этой статье мы рассмотрим методы уменьшения размерности и их применение в торговой среде MQL5. В частности, мы изучим нюансы линейного дискриминантного анализа (LDA) и анализа главных компонентов (PCA), а также посмотрим на их влияние при разработке стратегий и анализе рынка.
Индикатор оценки силы и слабости валютных пар на чистом MQL5
Создаем профессиональный индикатор для анализа силы валют на MQL5. Пошаговое руководство научит вас разрабатывать мощный торговый инструмент с визуальной панелью для MetaTrader 5. Вы узнаете, как рассчитывать силу валютных пар по нескольким таймфреймам (H1, H4, D1), реализовывать динамическое обновление данных и создавать удобный пользовательский интерфейс.
Разрабатываем мультивалютный советник (Часть 8): Проводим нагрузочное тестирование и обрабатываем новый бар
По мере продвижения мы использовали в одном советнике всё больше и больше одновременно работающих экземпляров торговых стратегий. Попробуем выяснить до какого количества экземпляров мы можем дойти прежде, чем столкнёмся ограничениями ресурсов.
Арбитражный трейдинг Forex: Анализ движений синтетических валют и их возврат к среднему
В статье попробуем рассмотреть движения синтетических валют на связке Python + MQL5 и понять, насколько реален арбитраж на Форекс сегодня. А также: готовый код Python для анализа синтетических валют и подробней о том, что такое синтетические валюты на Форекс.
Машинное обучение и Data Science (Часть 30): Тандем из сверточных (CNN) и рекуррентных (RNN) нейросетей для прогнозирования фондового рынка
В этой статье мы рассмотрим динамическую интеграцию сверточных нейронных сетей (CNN) и рекуррентных нейронных сетей (RNN) для задач прогнозирования фондового рынка. Для этого соединим способность CNN извлекать закономерности и эффективность RNN в обработке последовательных данных. Давайте посмотрим, как такая мощная комбинация может повысить точность и эффективность торговых алгоритмов.
Прогнозирование валютных курсов с использованием классических методов машинного обучения: Логит и Пробит модели
Предпринята попытка построить торговый эксперт для предсказания котировок валютных курсов. За основу алгоритма взяты классические модели классификации — логистическая и пробит регрессия. В качестве фильтра торговых сигналов используется критерий отношения правдоподобия.
Разработка торгового советника с нуля (Часть 16): Доступ к данным в Интернете (II)
Знание того, как вводить данные из Web в советник, не так очевидно, вернее, не так просто, чтобы это можно было сделать без понимания всех возможностей, которые есть в MetaTrader 5.
Популяционные алгоритмы оптимизации: Гибридный алгоритм оптимизации бактериального поиска с генетическим алгоритмом (Bacterial Foraging Optimization - Genetic Algorithm, BFO-GA)
В статье представлен новый подход к решению оптимизационных задач, путём объединения идей алгоритмов оптимизации бактериального поиска пищи (BFO) и приёмов, используемых в генетическом алгоритме (GA), в гибридный алгоритм BFO-GA. Он использует роение бактерий для глобального поиска оптимального решения и генетические операторы для уточнения локальных оптимумов. В отличие от оригинального BFO бактерии теперь могут мутировать и наследовать гены.
Риск-менеджер для торговых роботов (Часть I): Включаемый файл контроля рисков для советников
Трейдинг характеризуется высокими требованиями к дисциплине риск-менеджмента. Настоящая работа представляет анализ основных причин неудач трейдеров и предлагает техническое решение в виде класса CEnhancedRiskManager для платформы MQL5. Включает практическое тестирование на агрессивном сеточном советнике.
Оптимизация атмосферными облаками — Atmosphere Clouds Model Optimization (ACMO): Практика
В данной статье мы продолжим погружение в реализацию алгоритма ACMO (Atmospheric Cloud Model Optimization). В частности, обсудим два ключевых аспекта: перемещение облаков в регионы с низким давлением и моделирование процесса дождя, включая инициализацию капель и распределение их между облаками. Мы также разберем другие методы, которые играют важную роль в управлении состоянием облаков и обеспечении их взаимодействия с окружающей средой.
Популяционные алгоритмы оптимизации: Эволюция социальных групп (Evolution of Social Groups, ESG)
В статье рассмотрим принцип построения многопопуляционных алгоритмов и в качестве примера такого вида алгоритмов разберём Эволюцию социальных групп (ESG), новый авторский алгоритм. Мы проанализируем основные концепции, механизмы взаимодействия популяций и преимущества этого алгоритма, а также рассмотрим его производительность в задачах оптимизации.
Разработка системы репликации - Моделирование рынка (Часть 20): ФОРЕКС (I)
Первоначальная цель данной статьи заключается не в охвате всех возможностей ФОРЕКС, а скорее в адаптации системы таким образом, чтобы вы могли совершить хотя бы одну репликацию рынка. Моделирование оставим для другого момента. Однако, если у нас нет тиков, а есть только бары, приложив немного усилий, мы можем смоделировать возможные сделки, которые могли произойти на рынке ФОРЕКС. Так будет до тех пор, пока мы не рассмотрим, как адаптировать тестер. Попытка работать с данными ФОРЕКС внутри системы без их модификации приводит к ошибкам диапазона.
Оптимизация портфеля на форексе: Синтез VaR и теории Марковица
Как осуществляется портфельная торговля на Форекс? Как могут быть синтезированы портфельная теория Марковица для оптимизации пропорций портфеля и VaR модель для оптимизации риска портфеля? Создаем код по портфельной теории, где, с одной стороны, получим низкий риск, а с другой — приемлемую долгосрочную доходность.
Компьютерное зрение для трейдинга (Часть 1): Создаем базовый простой функционал
Система прогнозирования EURUSD с применением компьютерного зрения и глубокого обучения. Узнайте, как сверточные нейронные сети могут распознавать сложные ценовые паттерны на валютном рынке и предсказывать движение курса с точностью до 54%. Статья раскрывает методологию создания алгоритма, использующего технологии искусственного интеллекта для визуального анализа графиков вместо традиционных технических индикаторов. Автор демонстрирует процесс трансформации ценовых данных в «изображения», их обработку нейронной сетью и уникальную возможность заглянуть в «сознание» ИИ через карты активации и тепловые карты внимания. Практический код на Python с использованием библиотеки MetaTrader 5 позволяет читателям воспроизвести систему и применить ее в собственной торговле.
Алгоритм оптимизации на основе мозгового штурма — Brain Storm Optimization (Часть II): Многомодальность
Во второй части статьи перейдем к практической реализации алгоритма BSO, проведем тесты на тестовых функциях и сравним эффективность BSO с другими методами оптимизации.
Создание прибыльной торговой системы (Часть 1): Количественный подход
Многие трейдеры оценивают стратегии, основываясь на краткосрочных результатах, часто слишком рано отказываясь от прибыльных систем. Однако долгосрочная прибыльность зависит от положительного ожидания посредством оптимизированного Win Rate и соотношения доходности к риску (Risk-Reward), а также дисциплины при выборе размера позиции. Эти принципы можно проверить с помощью метода Монте-Карло в Python с использованием проверенных на исторических данных показателей, чтобы оценить, является ли стратегия надежной или со временем может потерпеть неудачу.
Методы оптимизации библиотеки ALGLIB (Часть I)
В статье познакомимся с методами оптимизации библиотеки ALGLIB для MQL5. Статья включает простые и наглядные примеры применения ALGLIB для решения задач оптимизации, что сделает процесс освоения методов максимально доступным. Мы подробно рассмотрим подключение таких алгоритмов, как BLEIC, L-BFGS и NS, и на их основе решим простую тестовую задачу.
Машинное обучение и Data Science (Часть 19): Совершенствуем AI-модели с помощью AdaBoost
Алгоритм AdaBoost используется для повышения производительности моделей искусственного интеллекта. AdaBoost (Adaptive Boosting, адаптивный бустинг) представляет собой сложную методику ансамблевого обучения, которая легко объединяет слабых учащихся, повышая их коллективную способность прогнозирования.
Арбитражная алготорговля на теории графов
В рамках статьи треугольный арбитраж представляется как задача поиска циклов в ориентированном графе, где вершины — валюты, рёбра — валютные пары с весами-курсами. Прибыльный цикл: произведение весов >1. Созданные нами алгоритмы Floyd-Warshall и DFS находят оптимальные пути обмена валют, возвращающиеся в исходную точку с прибылью.
Анализируем двоичный код цен на бирже (Часть I): Новый взгляд на технический анализ
В этой статье представлен инновационный подход к техническому анализу, основанный на преобразовании ценовых движений в бинарный код. Автор демонстрирует, как различные аспекты рыночного поведения — от простых движений цены до сложных паттернов — можно закодировать в последовательности нулей и единиц.
Статистический арбитраж посредством возврата к среднему значению в парной торговле: Обыграем рынок с помощью математики
Эта статья описывает фундаментальные основы статистического арбитража на уровне портфеля. Ее цель — облегчить понимание принципов статистического арбитража читателям, не обладающим глубокими математическими познаниями, и предложить отправную концептуальную конструкцию. Статья включает в себя работающего экспертного советника, некоторые заметки о его тестировании на исторических данных в пределах одного года, а также соответствующие настройки конфигурации тестирования на исторических данных (файл .ini) для воспроизведения эксперимента.
Фильтр Калмана для возвратных стратегий на рынке Форекс
Фильтр Калмана представляет собой рекурсивный алгоритм, применяемый в алготрейдинге для оценки истинного состояния финансового временного ряда посредством фильтрации шума из движения цен. Он динамически обновляет прогнозы на основе новых рыночных данных, что делает его ценным для таких адаптивных стратегий, как возвратные. В этой статье впервые представлен фильтр Калмана, а также рассмотрены его расчет и реализация. Кроме того, в качестве примера мы применим этот фильтр к классической возвратной форекс-стратегии. Наконец, проведем различные виды статистического анализа, сравнивая фильтр со скользящей средней на различных валютных парах.
Объединяем LLM, CatBoost и квантовые вычисления в единую торговую систему
В статье предлагается синтез новых технологий для преодоления ограничений классических индикаторов в аналитике рыночных данных. Показано, как языковые модели и квантовое кодирование могут выявлять скрытые рыночные паттерны, которые традиционные методики упускают. Эксперимент подтверждает ценность новых технологий и предлагает обновлённую методологию анализа, соответствующую современному уровню вычислительных инноваций.
Популяционные алгоритмы оптимизации: Алгоритмы искусственной микро-иммунной системы (Micro Artificial immune system, Micro-AIS)
Статья рассказывает о методе оптимизации, основанном на принципах функционирования иммунной системы организма — Micro Artificial Immune System (Micro-AIS) — модификацию AIS. Micro-AIS использует более простую модель иммунной системы и простые операции обработки иммунной информации. Статья также обсуждает преимущества и недостатки Micro-AIS по сравнению с обычным AIS.
Разработка системы репликации (Часть 57): Анализируем тестовый сервис
И заключительный момент: хотя он и не включен в эту статью, я объясню код сервиса, который будет использоваться в следующей, поскольку мы будем использовать этот же код в качестве трамплина для того, что мы на самом деле разрабатываем. Так что, наберитесь терпения и ждите следующей статьи, ведь с каждым днем все становится еще интереснее.
Разметка данных в анализе временных рядов (Часть 5):Применение и тестирование советника с помощью Socket
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Популяционные алгоритмы оптимизации: Алгоритм поиска системой зарядов (Charged System Search, CSS)
В этой статье рассмотрим ещё один алгоритм оптимизации, инспирированный неживой природой - алгоритм поиска системой зарядов (CSS). Цель этой статьи - представить новый алгоритм оптимизации, основанный на принципах физики и механики.
Анализ всех вариантов движения цены на квантовом компьютере IBM
Используем квантовый компьютер от IBM для открытия всех вариантов движения цены. Звучит как научная фантастика? Добро пожаловать в мир квантовых вычислений для трейдинга!
Одномерный сингулярный спектральный анализ
Статья рассматривает теоретические и практические аспекты метода сингулярного спектрального анализа (SSA), который представляет собой эффективный метод анализа временных рядов, позволяющий представить сложную структуру ряда в виде разложения на простые компоненты, такие как тренд, сезонные (периодические) колебания и шум.
Многопоточный торговый робот с машинным обучением: От концепции до реализации
Статья представляет пошаговую разработку многопоточного торгового робота с машинным обучением на Python и MetaTrader 5. Рассматривается архитектура системы — от сбора данных и создания технических индикаторов до обучения XGBoost-моделей с портфельным риск-менеджментом. Детально описана реализация аугментации данных, кластеризации признаков через Gaussian Mixture Models и координации потоков для параллельной торговли несколькими валютными парами.
Разработка системы репликации (Часть 47): Проект Chart Trade (VI)
Наконец, наш индикатор Chart Trade начинает взаимодействовать с советником, позволяя передавать информацию в интерактивном режиме. Поэтому в этой статье мы доработаем индикатор, сделав его функциональным настолько, чтобы его можно было использовать вместе с каким-либо советником. Это позволит нам получить доступ к индикатору Chart Trade и работать с ним, как если бы он действительно был связан с советником. Но сделаем мы это гораздо более интересным способом чем ранее.
Разметка данных в анализе временных рядов (Часть 6):Применение и тестирование советника с помощью ONNX
В этой серии статей представлены несколько методов разметки временных рядов, которые могут создавать данные, соответствующие большинству моделей искусственного интеллекта (ИИ). Целевая разметка данных может сделать обученную модель ИИ более соответствующей пользовательским целям и задачам, повысить точность модели и даже помочь модели совершить качественный скачок!
Определение перекупленности и перепроданности по теории хаоса
Определяем перекупленность и перепроданность рынка по теории хаоса: интеграция принципов теории хаоса, фрактальной геометрии и нейронных сетей для прогнозирования финансовых рынков. Исследование демонстрирует применение показателя Ляпунова, как меры рыночной хаотичности, и динамическую адаптацию торговых сигналов. Методология включает алгоритм генерации фрактального шума, гиперболическую тангенциальную активацию и оптимизацию с моментом.
Алгоритм искусственного пчелиного улья — Artificial Bee Hive Algorithm (ABHA): Тестирование и результаты
В этой статье мы продолжим изучение алгоритма искусственного пчелиного улья ABHA, углубляясь в написание кода и рассматривая оставшиеся методы. Напомним, что каждая пчела в модели представлена как индивидуальный агент, чье поведение зависит от внутренней и внешней информации, а также мотивационного состояния. Мы проведем тестирование алгоритма на различных функциях и подведем итоги, представив результаты в рейтинговой таблице.
Нейросетевой торговый робот на современной архитектуре нейросети Mamba с селективной SSM
Статья исследует революционную архитектуру нейронной сети Mamba/SSM для прогнозирования финансовых временных рядов. Представлена полная реализация на MQL5 современной альтернативы Transformer с линейной сложностью O(N) вместо квадратичной O(N²). Детально рассмотрены селективные State Space Models, hardware-aware оптимизации, patching техники и продвинутые методы обучения AdamW. Включены практические результаты тестирования, показавшие увеличение точности с 62% до 71% при снижении времени обучения с 45 до 8 минут. Представлен готовый торговый советник с автообучением и адаптивным риск-менеджментом для MetaTrader 5.
Машинное обучение и Data Science (Часть 29): Как отбирать лучшие форекс-данные для обучения ИИ
В этой статье мы подробно рассмотрим важные аспекты при выборе наиболее релевантных и качественных данных с рынка Forex для повышения производительности моделей искусственного интеллекта.
Разработка системы репликации - Моделирование рынка (Часть 22): ФОРЕКС (III)
Хотя это уже третья статья об этом, я должен объяснить для тех, кто еще не понял разницу между фондовым рынком и валютным рынком (ФОРЕКС): большая разница заключается в том, что в ФОРЕКС не существует, точнее, нам не дают информацию о некоторых моментах, которые действительно происходили в ходе торговли.
Разрабатываем мультивалютный советник (Часть 28): Добавляем менеджер закрытия позиций
При параллельной работе многих стратегий может возникнуть желание время от времени закрывать все открытые позиции и начинать работу стратегий заново. Уже написанный код позволяет реализовать такое поведение только вместе с ручными манипуляциями. Попробуем автоматизировать эту часть.