MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
preview
取引システムの構築(第3回):現実的な利益目標のための最小リスクレベルの決定

取引システムの構築(第3回):現実的な利益目標のための最小リスクレベルの決定

すべてのトレーダーの究極の目標は収益を上げることです。そのため、多くのトレーダーは、定められた取引期間内に達成すべき具体的な利益目標を設定します。本記事では、モンテカルロシミュレーションを用いて、取引目標を達成するために必要な取引ごとの最適なリスク割合を算出します。この結果は、利益目標が現実的か、それとも過度に野心的かを判断する際に役立ちます。最後に、取引目標に見合った実用的なリスク割合を設定するために調整可能なパラメータについても解説します。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解

MQL5で自己最適化エキスパートアドバイザーを構築する(第10回):行列分解

行列分解は、データの特性を理解するために用いられる数学的手法です。行と列で整理された大規模な市場データに行列分解を適用することで、市場のパターンや特性を明らかにすることができます。行列分解は非常に強力なツールであり、本記事ではMetaTrader 5のターミナル内でMQL5 APIを活用し、市場データをより深く分析する方法を紹介します。
preview
MetaTrader 5での取引の視覚的な評価と調整

MetaTrader 5での取引の視覚的な評価と調整

ストラテジーテスターは、単に自動売買ロボットのパラメータを最適化するだけでなく、さらに幅広い活用が可能です。本記事では、口座の取引履歴を事後に評価し、ストラテジーテスター上でポジションのストップロスを変更することで取引の調整をおこなう方法を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。パターンごとに何が役に立つのか、そして何を避けることができるのかを調べます。いつものように、ウィザードで組み立てられたEAと、エキスパートシグナルクラスに組み込まれているパターン使用関数を使用しています。
preview
初級から中級まで:浮動小数点

初級から中級まで:浮動小数点

この記事は浮動小数点数の概念に関する簡単な入門です。本稿の内容は非常に複雑ですので、注意深く丁寧に読んでください。浮動小数点システムをすぐに完全に理解できるとは思わないでください。浮動小数点は、実際に使って経験を積むことで少しずつ理解できるようになります。しかし、この記事を読むことで、なぜアプリケーションの結果が期待と異なる場合があるのか、その理由を理解する手助けになるでしょう。
preview
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
preview
MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

本記事では、MQL5を用いて複数の通貨ペアをリアルタイムで監視できるローリングティッカーテープを開発します。Bid価格(買値)、スプレッド、日次変化率をスクロール表示し、価格変動やトレンドを効果的に強調するために、フォント、色、スクロール速度をカスタマイズ可能にします。
preview
取引におけるニューラルネットワーク:層状メモリを持つエージェント

取引におけるニューラルネットワーク:層状メモリを持つエージェント

層状メモリアプローチは、人間の認知プロセスを模倣することで、複雑な金融データの処理や新しいシグナルへの適応を可能にし、動的な市場における投資判断の有効性を向上させます。
preview
MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

本記事では、MQL5経済カレンダーを強化し、ドラッグ可能なダッシュボードを導入してインターフェースの位置を自由に変更できるようにし、チャートの視認性を高めます。また、ボタンのホバー効果を実装して操作性を高め、動的に変化するスクロールバーによってスムーズなナビゲーションを実現します。
preview
知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

移動平均収束拡散法(MACD)オシレーターとオンバランスボリューム(OBV)オシレーターは、MQL5のエキスパートアドバイザー(EA)内で併用できるもう一つの指標ペアです。本連載における慣例どおり、この組み合わせも補完関係にあり、MACDがトレンドを確認し、OBVが出来高を検証します。MQL5ウィザードを用いて、この2つが持つ潜在力を構築、検証します。
preview
MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

Telegramと同様に、Discordもその通信APIを使用してJSON形式の情報やメッセージを受信することができます。本記事では、MetaTrader5からDiscordの取引コミュニティに取引シグナルやアップデートを送信するためにDiscord APIをどのように利用できるかを探っていきます。
preview
SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC (Smart Money Concepts)で取引のレベルアップを実現する:OB、BOS、FVG

SMC(Smart Money Concepts、スマートマネーコンセプト)のOB(Order Blocks、注文ブロック)、BOS(Break of Structure、ブレイクオブストラクチャ)、FVG(Fair Value Gaps、公正価格ギャップ)を1つの強力なEAに統合することで、取引をさらに進化させることができます。自動モードで戦略を実行することも、特定のSMCコンセプトだけを使用することも可能で、柔軟かつ精度の高い取引が実現します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
preview
MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

この記事では、MQL5の多時間軸スキャナーダッシュボードを、移動可能および切り替え機能付きにアップグレードします。ダッシュボードをドラッグできるようにし、画面の使用効率を高めるために最小化/最大化オプションを追加します。これらの機能強化を実装し、テストすることで、より柔軟な取引環境を実現します。
preview
MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

MQL5取引ツール(第6回):パルスアニメーションとコントロールを備えたダイナミックホログラフィックダッシュボード

本記事では、MQL5で動的なホログラフィックダッシュボードを作成し、RSIやボラティリティアラート、ソートオプションを使用して銘柄と時間足を監視します。さらに、パルスアニメーション、インタラクティブボタン、ホログラフィック効果を追加して、ツールを視覚的に魅力的で反応の良いものにします。
preview
知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

知っておくべきMQL5ウィザードのテクニック(第77回):ゲーターオシレーターとA/Dオシレーターの使用

ビル・ウィリアムズが開発したゲーターオシレーター(Gator Oscillator)とA/Dオシレーター(Accumulation/Distribution Oscillator)は、MQL5のエキスパートアドバイザー(EA)内で調和的に活用できるインジケーターペアの一例です。ゲーターオシレーターはトレンドを確認するために使用し、A/Dオシレーターは出来高を通じてそのトレンドを検証する補助指標として機能します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
preview
MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

本記事では、最小二乗法を用いてサポートおよびレジスタンスのトレンドラインを検出し、価格がこれらのラインに触れた際に動的な売買シグナルを生成するTrendline Traderプログラムを開発します。また、生成されたシグナルに基づきポジションをオープンする仕組みも構築します。
preview
プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

市場センチメントは、価格変動に影響を与える要因の中でも最も見落とされがちでありながら強力な要因のひとつです。多くのトレーダーが遅行指標や経験則に頼る中、Sentiment Tilt Meter (STM) EAは生の市場データを明確で視覚的なガイダンスへと変換し、市場が強気、弱気、中立のどちらへ傾いているのかをリアルタイムで示します。これにより、エントリーの根拠を確認し、ダマシを回避し、市場参加のタイミングをより適切に図りやすくなります。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

前回の記事では、Multitask-Stockformerフレームワークを検討しました。このフレームワークは、ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたものです。本記事では、このフレームワークのアルゴリズムをさらに実装し、実際の過去データを用いてその有効性を評価していきます。
preview
量子コンピューティングと取引:価格予測への新たなアプローチ

量子コンピューティングと取引:価格予測への新たなアプローチ

本記事では、量子コンピューティングを用いて金融市場における価格変動を予測するための革新的なアプローチについて説明します。主な焦点は、量子位相推定(QPE: Quantum Phase Estimation)アルゴリズムを適用して価格パターンのプロトタイプを見つけることであり、これによりトレーダーは市場データの分析を大幅に高速化できるようになります。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
preview
知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

知っておくべきMQL5ウィザードのテクニック(第66回):FrAMAのパターンとForce Indexを内積カーネルで使用する

FrAMAインジケーターとForce Indexオシレーターは、トレンドと出来高のツールであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事では、このペアを紹介し、機械学習の適用可能性を検討しました。畳み込みニューラルネットワークを使用しており、内積カーネルを利用して、これらのインジケーターの入力に基づいた予測をおこないます。これは、MQL5ウィザードと連携してEAを組み立てるカスタムシグナルクラスファイルで実行されます。
preview
古典的な戦略を再構築する(第14回):複数戦略分析

古典的な戦略を再構築する(第14回):複数戦略分析

本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。
preview
MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

MQL5での取引戦略の自動化(第24回):リスク管理とトレーリングストップを備えたロンドンセッションブレイクアウトシステム

本記事では、ロンドン市場開場前のレンジブレイクアウトを検出し、任意の取引タイプおよびリスク設定に基づいてペンディング注文(指値・逆指値注文)を自動で発注する「ロンドンセッションブレイクアウトシステム」を開発します。トレーリングストップ、リスクリワード比率、最大ドローダウン制限、そしてリアルタイム監視と管理をおこなうためのコントロールパネルなどの機能も組み込みます。
preview
市場シミュレーション(第3回):パフォーマンスの問題

市場シミュレーション(第3回):パフォーマンスの問題

時には一歩下がってから前進する必要があります。本記事では、マウスインジケーターおよびChart Tradeインジケーターが正常に動作するようにするために必要なすべての変更についてご紹介します。さらにおまけとして、今後広く使用される他のヘッダーファイルにおける変更についても触れます。
preview
取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

マルチエージェント自己適応(MASA: Multi-Agent Self-Adaptive)フレームワークについて紹介します。本フレームワークは、強化学習と適応戦略を組み合わせ、変動の激しい市場環境においても収益性とリスク管理のバランスを実現します。
preview
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(MASAAT)

取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(MASAAT)

アテンション機構と時系列解析を組み合わせたマルチエージェント自己適応型ポートフォリオ最適化フレームワーク(MASAAT: Multi-Agent Self-Adaptive Portfolio Optimization Framework)を提案します。MASAATは、価格系列や方向性の変化を分析する複数のエージェントを生成し、異なる詳細レベルで資産価格の重要な変動を特定できるように設計されています。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル

ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたフレームワークを紹介します。本フレームワークは、ボラティリティの高い市場環境における予測の応答性および精度の向上を目的としています。ウェーブレット変換により、資産収益率を高周波成分と低周波成分に分解し、長期的な市場トレンドと短期的な変動の双方を的確に捉えることが可能となります。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析(2)

MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析(2)

次のフォローアップディスカッションにぜひご参加ください。今回は、これまでの2つの取引戦略を統合し、アンサンブル取引戦略(複合戦略)を作成する方法を解説します。複数の戦略を組み合わせる際のさまざまな手法を紹介するとともに、パラメータ空間の制御方法についても説明します。これにより、パラメータの数が増えても、効果的な最適化が可能な状態を保つことができます。
preview
初級から中級まで:テンプレートとtypename(III)

初級から中級まで:テンプレートとtypename(III)

本記事では、トピックの第一部について解説します。この内容は初心者にとって理解がやや難しい部分があります。さらなる混乱を避けて正しく理解していただくために、説明を段階的に分けて進めます。本記事ではその第一段階に焦点を当てます。ただし、記事の最後では行き詰まりに見えるかもしれませんが、実際には次の記事でより理解しやすくなる状況への一歩を踏み出す形になります。
preview
取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(最終回)

取引におけるニューラルネットワーク:Attentionメカニズムを備えたエージェントのアンサンブル(最終回)

前回の記事では、複数のエージェントによるアンサンブルを用いて、異なるデータスケールのマルチモーダル時系列をクロス分析するマルチエージェント適応型フレームワーク「MASAAT」を紹介しました。今回は、このフレームワークのアプローチをMQL5で引き続き実装し、この研究を論理的な結論へと導きます。
preview
データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出

データサイエンスとML(第43回):潜在ガウス混合モデル(LGMM)を用いた指標データにおける隠れパターン検出

チャートを見ていて、奇妙な感覚を覚えたことはありませんか。表面のすぐ下にパターンが隠されている気がして、もし解読できれば価格がどこに向かうか分かるかもしれない、そんな秘密のコードが存在するかもしれないという感覚です。ここで紹介するのがLGMM、マーケットの隠れたパターンを検出するモデルです。これは機械学習モデルで、隠れた市場のパターンを識別する手助けをします。
preview
初級から中級まで:テンプレートとtypename(IV)

初級から中級まで:テンプレートとtypename(IV)

本記事では、前回の記事の最後で提示した問題の解決方法について詳しく解説します。そのために、データunionのテンプレートを作成できるタイプのテンプレートを設計しようという試みがおこなわれました。
preview
ブラックホールアルゴリズム(BHA)

ブラックホールアルゴリズム(BHA)

ブラックホールアルゴリズム(BHA)は、ブラックホールの重力原理に着想を得た最適化アルゴリズムです。本記事では、BHAがどのようにして優れた解を引き寄せ、局所最適解への陥り込みを回避するのか、そしてなぜこのアルゴリズムが複雑な問題を解くための強力なツールとなっているのかを解説します。シンプルな発想がいかにして最適化の世界で大きな成果を生み出すのかを見ていきましょう。
preview
循環単為生殖アルゴリズム(CPA)

循環単為生殖アルゴリズム(CPA)

本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。
preview
MQL5で他の言語の実用的なモジュールを実装する(第2回):Pythonに着想を得たREQUESTSライブラリの構築

MQL5で他の言語の実用的なモジュールを実装する(第2回):Pythonに着想を得たREQUESTSライブラリの構築

この記事では、MetaTrader 5 (MQL5)でWebリクエストの送受信をより簡単におこなうために、Pythonのrequestsモジュールに似たモジュールを実装します。
preview
知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

知っておくべきMQL5ウィザードのテクニック(第75回):Awesome Oscillatorとエンベロープの使用

ビル・ウィリアムズによるオーサムオシレータ(AO: Awesome Oscillator)とエンベロープチャネル(Envelopes Channel)は、MQL5のエキスパートアドバイザー(EA)内で補完的に使用できる組み合わせです。AOはトレンドを検出する能力を持つためこれを利用し、一方でエンベロープチャネルはサポートおよびレジスタンスレベルを定義する目的で組み込みます。本記事は、このインジケーターの組み合わせを探求するにあたり、MQL5ウィザードを用いて両者が持つ可能性を構築および検証します。
preview
MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント

MQL5で他の言語の実用的なモジュールを実装する(第3回):Pythonのscheduleモジュール、強化版OnTimerイベント

Pythonのscheduleモジュールは、繰り返しタスクをスケジュールする簡単な方法を提供します。MQL5には組み込みの同等機能はありませんが、この記事ではMetaTrader 5でのタイムイベントの設定を容易にするために、類似のライブラリを実装します。
preview
プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

MetaTrader 5ターミナルの潜在能力を最大限に引き出すために、Pythonのデータサイエンスエコシステムと公式のMetaTrader 5クライアントライブラリを活用する方法を紹介します。本記事では、認証をおこない、ライブティックおよび分足データを直接Parquetストレージにストリーミングする手法を解説し、taやProphetを用いた高度な特徴量エンジニアリングをおこない、時間依存型の勾配ブースティングモデルを学習させる方法を示します。その後、軽量なFlaskサービスを展開して、リアルタイムで取引シグナルを提供します。ハイブリッドクオンツフレームワークを構築する場合でも、エキスパートアドバイザー(EA)に機械学習を組み込む場合でも、データ駆動型アルゴリズム取引のための堅牢なエンドツーエンドパイプラインを習得できます。