MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
リプレイシステムの開発(第34回):発注システム (III)

リプレイシステムの開発(第34回):発注システム (III)

今回は、構築の第一段階を完成させます。この部分はかなり短時間で終わりますが、前回までに説明しなかった詳細をカバーします。多くの方が理解していない点をいくつか説明します。なぜShiftキーやCtrlキーを押さなければならないかご存じでしょうか。
preview
DoEasy - コントロール(第22部):SplitContainer - 作成したオブジェクトのプロパティを変更する

DoEasy - コントロール(第22部):SplitContainer - 作成したオブジェクトのプロパティを変更する

今回は、新しく作成したSplitContainerコントロールのプロパティと外観を変更する機能を実装します。
preview
リプレイシステムの開発(第77回):新しいChart Trade (IV)

リプレイシステムの開発(第77回):新しいChart Trade (IV)

この記事では、通信プロトコルを作成する際に考慮すべきいくつかの対策や注意点について説明します。内容は比較的シンプルでわかりやすいものなので、詳細には触れません。しかし、この記事の内容を理解することで、今後の展開が把握しやすくなります。
preview
MQL5における相関分析の要素:ピアソンのカイ二乗検定による独立性と相関比

MQL5における相関分析の要素:ピアソンのカイ二乗検定による独立性と相関比

この記事では相関分析の古典的なツールについて考察します。簡潔な理論的背景と、ピアソンのカイ二乗独立性検定および相関比の実践的な実装に重点が置かれています。
preview
プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

プライスアクション分析ツールキットの開発(第15回):クォーターズ理論の紹介(I) - Quarters Drawerスクリプト

サポートとレジスタンスのポイントは、トレンドの反転や継続の可能性を示す重要なレベルです。これらのレベルを見つけるのは難しいこともありますが、一度特定できれば、市場をより的確に捉える準備が整います。さらなるサポートとして、本記事で紹介されているQuarters Drawerツールをぜひご活用ください。このツールは、主要およびマイナーなサポート・レジスタンスレベルの特定に役立ちます。
preview
知っておくべきMQL5ウィザードのテクニック(第74回): 教師あり学習で一目均衡表とADX Wilderのパターンを利用する

知っておくべきMQL5ウィザードのテクニック(第74回): 教師あり学習で一目均衡表とADX Wilderのパターンを利用する

前回の記事では、一目均衡表とADXのインジケーターペアを紹介しました。今回は、このペアを教師あり学習でどのように改善できるかを見ていきます。一目均衡表とADXは、サポート/レジスタンスとトレンドを補完する組み合わせとして機能します。今回の教師あり学習アプローチでは、ディープスペクトル混合カーネルを用いたニューラルネットワークを活用し、このインジケーターペアの予測精度を微調整します。通常どおり、この処理はMQL5ウィザードでエキスパートアドバイザー(EA)を組み立てる際に利用できるカスタムシグナルクラスファイル内でおこないます。
preview
DoEasy-コントロール(第16部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、コンテナに合わせたヘッダーの伸び

DoEasy-コントロール(第16部):TabControl WinFormsオブジェクト — 複数行のタブヘッダー、コンテナに合わせたヘッダーの伸び

この記事では、TabControlの開発を続け、ヘッダーのサイズを設定するすべてのモードに対して、コントロールの4つの側面すべてにタブヘッダーの配置(通常、固定、右詰め)を実装します。
preview
知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

知っておくべきMQL5ウィザードのテクニック(第41回):DQN (Deep-Q-Network)

DQN (Deep-Q-Network)は強化学習アルゴリズムであり、機械学習モジュールの学習プロセスにおいて、次のQ値と理想的な行動を予測する際にニューラルネットワークを関与させます。別の強化学習アルゴリズムであるQ学習についてはすでに検討しました。そこでこの記事では、強化学習で訓練されたMLPが、カスタムシグナルクラス内でどのように使用できるかを示すもう1つの例を紹介します。
preview
アフリカ水牛最適化(ABO)

アフリカ水牛最適化(ABO)

この記事では、アフリカ水牛の特異な行動に着想を得て2015年に開発されたメタヒューリスティック手法、アフリカ水牛最適化(ABO)アルゴリズムを紹介します。アルゴリズムの実装プロセスと、複雑な問題の解決におけるその高い効率性について詳しく解説しており、最適化分野における有用なツールであることが示されています。
preview
MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)

MQL5で取引管理者パネルを作成する(第6回):多機能インターフェイス(I)

取引管理者の役割はTelegram通信だけにとどまらず、注文管理、ポジション追跡、インターフェイスのカスタマイズなど、さまざまな制御アクティビティにも携わります。この記事では、MQL5の複数の機能をサポートするためにプログラムを拡張するための実用的な洞察を共有します。このアップデートは、主にコミュニケーションに重点を置くという現在のAdminパネルの制限を克服し、より幅広いタスクを処理できるようにすることを目的としています。
preview
MQL5での取引戦略の自動化(第34回):R²適合度を用いたトレンドラインブレイクアウトシステム

MQL5での取引戦略の自動化(第34回):R²適合度を用いたトレンドラインブレイクアウトシステム

本記事では、スイングポイントを用いてサポートおよびレジスタンスのトレンドラインを特定し、R²(決定係数)による適合度と角度制約で検証することで、ブレイクアウト取引を自動化するMQL5によるトレンドラインブレイクアウトシステムを構築します。本システムでは、指定したルックバック期間内のスイングハイとスイングローを検出し、一定数以上のタッチポイントを持つトレンドラインを生成します。その後、R²指標および角度制約を用いてトレンドラインの信頼性を評価し、取引に使用可能かを判定します。
preview
Numbaを使用したPythonの高速取引ストラテジーテスター

Numbaを使用したPythonの高速取引ストラテジーテスター

この記事では、Numbaを使った機械学習モデルのための高速ストラテジーテスターを実装しています。純粋なPythonのストラテジーテスターと比べて50倍速く動作します。このライブラリを使って特にループを含む数学計算を高速化することを推奨しています
preview
古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場

古典的な戦略を再構築する(第8回):USDCADをめぐる為替市場と貴金属市場

この連載では、よく知られた取引戦略を再検討し、AIを使って改善できるかどうかを検証します。本日のディスカッションでは、貴金属と通貨の間に信頼できる関係があるかどうかを検証します。
preview
多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

多通貨エキスパートアドバイザーの開発(第10回):文字列からオブジェクトを作成する

エキスパートアドバイザー(EA)の開発計画は複数の段階で構成されており、中間結果はデータベースに保存されます。しかし、これらの結果はオブジェクトとしてではなく、文字列や数値としてのみ抽出できます。したがって、データベースから読み込んだ文字列を基に、EAで目的のオブジェクトを再構築する方法が必要です。
preview
人工蜂の巣アルゴリズム(ABHA):テストと結果

人工蜂の巣アルゴリズム(ABHA):テストと結果

この記事では、人工蜂の巣アルゴリズム(ABHA)の探索を続け、コードの詳細を掘り下げるとともに、残りのメソッドについて考察します。ご存じのとおり、このモデルにおける各蜂は個別のエージェントとして表現されており、その行動は内部情報、外部情報、および動機付けの状態に依存します。さまざまな関数を用いてアルゴリズムをテストし、その結果を評価表としてまとめて提示します。
preview
古典的な戦略を再構築する(第6回):多時間枠分析

古典的な戦略を再構築する(第6回):多時間枠分析

この連載では、古典的な戦略を再検討し、AIを使って改善できるかどうかを検証します。本日の記事では、人気の高い多時間枠分析という戦略を検証し、AIによって戦略が強化されるかどうかを判断します。
preview
MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

MQL5でSHA-256暗号化アルゴリズムをゼロから実装する

これまで、DLLを使用せずに暗号通貨取引所との統合を構築することは長らく課題とされてきました。しかし、本ソリューションは、市場へ直接接続するための包括的なフレームワークを提供します。
preview
MQL5で取引管理者パネルを作成する(第11回):最新機能通信インターフェース(I)

MQL5で取引管理者パネルを作成する(第11回):最新機能通信インターフェース(I)

本日は、コミュニケーションパネルのメッセージングインターフェースを、現代の高性能なコミュニケーションアプリの標準に合わせて強化することに焦点を当てます。この改善は、CommunicationsDialogクラスの更新によって実現されます。この記事とディスカッションでは、主要な知見を紹介しつつ、MQL5を用いたインターフェースプログラミングの次のステップを整理していきます。
preview
MQL5での取引戦略の自動化(第18回):Envelopes Trend Bounce Scalping - コア基盤とシグナル生成(その1)

MQL5での取引戦略の自動化(第18回):Envelopes Trend Bounce Scalping - コア基盤とシグナル生成(その1)

本記事では、MQL5でのEnvelopes Trend Bounce Scalpingエキスパートアドバイザー(EA)のコア基盤を構築します。シグナル生成のためにエンベロープやその他のインジケーターを初期化します。また、次回の取引実行に備えてバックテストの設定をおこないます。
preview
リプレイシステムの開発(第40回):第2段階の開始(I)

リプレイシステムの開発(第40回):第2段階の開始(I)

今日は、リプレイ/シミュレーターシステムの新しい段階について話しましょう。この段階で、会話は本当に面白くなり、内容もかなり濃くなります。記事を熟読し、そこに掲載されているリンクを利用することを強くお勧めします。そうすることで、内容をより深く理解することができます。
preview
リプレイシステムの開発(第64回):サービスの再生(V)

リプレイシステムの開発(第64回):サービスの再生(V)

この記事では、コード内の2つのエラーを修正する方法について説明します。ただし、初心者プログラマーの皆さんに、物事が必ずしも期待どおりに進むとは限らないことを理解してもらえるよう、できるだけわかりやすく解説したいと思います。いずれにせよ、これは学びの機会です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。ここで紹介する内容は教育目的のみに限定されており、提示された概念を探求すること以外の目的でこのアプリケーションを最終的な文書と見なすべきではありません。
preview
母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

母集団最適化アルゴリズム:人工多社会的検索オブジェクト(MSO)

前回に引き続き、社会的集団について考えてみたいと思います。この記事では、移動と記憶のアルゴリズムを用いて社会集団の進化を探求しています。その結果は、社会システムの進化を理解し、最適化や解の探索に応用するのに役立つでしょう。
preview
プッシュ通知による取引の監視:MetaTrader 5サービスの例

プッシュ通知による取引の監視:MetaTrader 5サービスの例

この記事では、取引結果をスマートフォンに通知するサービスアプリの作成について説明します。標準ライブラリオブジェクトのリストを処理して、必要なプロパティごとにオブジェクトの選択を整理する方法を学習します。
preview
リプレイシステムの開発(第51回):物事は複雑になる(III)

リプレイシステムの開発(第51回):物事は複雑になる(III)

この記事では、MQL5プログラミングの分野で最も難解な問題の1つである、チャートIDを正しく取得する方法と、オブジェクトがチャートにプロットされない場合がある理由について解説します。ここで提供される資料は教育目的のみに使用されるべきです。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

Candlestick Trend Constraintモデルの構築(第5回):通知システム(パート3)

本稿ではWhatsAppとMetaTrader 5を統合して通知する方法を紹介します。理解を容易にするためにフローチャートを掲載し、統合におけるセキュリティ対策の重要性について説明します。指標の主な目的は、自動化によって分析を簡素化することであり、特定の条件が満たされたときにユーザーに警告するための通知方法を含むべきです。詳しくは本稿で説明します。
preview
初級から中級へ:配列と文字列(I)

初級から中級へ:配列と文字列(I)

本日の記事では、いくつかの特殊なデータ型について見ていきます。まず、文字列とは何かを定義し、いくつかの基本的な操作方法を説明します。これにより、興味深いデータ型を扱えるようになりますが、初心者にとっては少し混乱することもあるかもしれません。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
人工部族アルゴリズム(ATA)

人工部族アルゴリズム(ATA)

本記事では、状況に応じて適応的に動作する独自の二重行動システムを備えた進化的手法、人工部族アルゴリズム(ATA: Artificial Tribe Algorithm)の主要要素と革新点について、詳細に説明します。ATAは、個体学習と社会的学習を組み合わせ、探索には交叉を用い、局所最適に陥った際には移動によって新たな解を探索するためのアルゴリズムです。
preview
3Dバーによるトレンド強度・方向指標

3Dバーによるトレンド強度・方向指標

市場マイクロストラクチャの3次元可視化とテンソル分析に基づく、新しい市場トレンド分析のアプローチを検討します。
preview
知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

知っておくべきMQL5ウィザードのテクニック(第22回):条件付きGAN

敵対的生成ネットワーク(GAN: Generative Adversarial Network)は、より正確な結果を得るために、互いに訓練し合うニューラルネットワークのペアです。ExpertSignalクラスにおける金融時系列の予測への応用の可能性を考慮し、これらのネットワークの条件型を採用します。
preview
注文板に基づいた取引システムの開発(第1回):インジケーター

注文板に基づいた取引システムの開発(第1回):インジケーター

市場の厚みは、特に高頻度取引(HFT)アルゴリズムにおいて、高速な取引を実行するために不可欠な要素です。本連載では、多くの取引可能な銘柄に対してブローカー経由で取得できるこの種の取引イベントについて取り上げます。まずは、チャート上に直接表示されるヒストグラムのカラーパレット、位置、サイズをカスタマイズ可能なインジケーターから始めます。次に、特定の条件下でこのインジケーターをテストするためのBookEventイベントの生成方法について解説します。今後の記事では、価格分布データの保存方法や、そのデータをストラテジーテスターで活用する方法などのトピックも取り上げる予定です。
preview
MQL5取引ツールキット(第7回):直近でキャンセルされた予約注文に関する関数で履歴管理EX5ライブラリを拡張

MQL5取引ツールキット(第7回):直近でキャンセルされた予約注文に関する関数で履歴管理EX5ライブラリを拡張

直近でキャンセルされた予約注文を処理する関数に焦点を当て、History Manager EX5ライブラリの最終モジュールの作成を完了する方法を学習します。これにより、MQL5を使用してキャンセルされた予約注文に関連する重要な詳細を効率的に取得して保存するためのツールが提供されます。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識

PythonとMQL5を使用した特徴量エンジニアリング(第4回):UMAP回帰によるローソク足パターン認識

次元削減手法は、機械学習モデルのパフォーマンスを向上させるために広く用いられています。ここでは、UMAP (Uniform Manifold Approximation and Projection)という比較的新しい手法について説明します。UMAPは、古い手法に見られるデータの歪みや人工的な構造といった欠点を明確に克服することを目的として開発されました。UMAPは非常に強力な次元削減技術であり、似たローソク足を新たに効果的にグループ化できるため、アウトオブサンプル(未知データ)に対する誤差率を低減し、取引パフォーマンスを向上させることができます。
preview
知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第62回):強化学習TRPOでADXとCCIのパターンを活用する

ADXオシレーターとCCIオシレーターはそれぞれトレンドフォローインジケーターおよびモメンタムインジケーターであり、エキスパートアドバイザー(EA)を開発する際に組み合わせることができます。前回の記事に続き、今回は開発済みモデルの運用中の学習や更新を、強化学習を用いてどのように実現できるかを検討します。この記事で使用するアルゴリズムは、本連載ではまだ扱っていない「TRPO(Trust Region Policy Optimization、信頼領域方策最適化)」として知られる手法です。また、MQL5ウィザードによるEAの組み立ては、モデルのテストをより迅速におこなえるだけでなく、異なるシグナルタイプで配布し検証できる形でセットアップできる点も利点です。
preview
知っておくべきMQL5ウィザードのテクニック(第83回): ストキャスティクスとFrAMAのパターンの使用 - 行動アーキタイプ

知っておくべきMQL5ウィザードのテクニック(第83回): ストキャスティクスとFrAMAのパターンの使用 - 行動アーキタイプ

ストキャスティクスとフラクタル適応型移動平均(FrAMA: Fractal Adaptive Moving Average)は、互いに補完し合う特性を持っており、MQL5のエキスパートアドバイザー(EA)で使える指標ペアの1つです。ストキャスティクスはモメンタムの変化を捉えるために使用し、FrAMAは現在のトレンドを確認するために利用します。本記事では、これら2つのインジケーターの組み合わせについて、MQL5ウィザードを活用して構築およびテストをおこない、その有効性を検証します。
preview
リプレイシステムの開発(第56回):モジュールの適応

リプレイシステムの開発(第56回):モジュールの適応

モジュール同士はすでに適切に連携していますが、リプレイサービスでマウスポインタを使用しようとするとエラーが発生します。次のステップに進む前に、この問題を修正する必要があります。さらに、マウスインジケーターのコードにある別の問題も修正します。この修正によって、今回のバージョンは最終的に安定し、洗練されたものになります。
preview
ニューラルネットワークが簡単に(第85回):多変量時系列予測

ニューラルネットワークが簡単に(第85回):多変量時系列予測

この記事では、線形モデルとTransformerの長所を調和的に組み合わせた、新しい複雑な時系列予測手法を紹介します。
preview
雲モデル最適化(ACMO):実践編

雲モデル最適化(ACMO):実践編

この記事では、ACMO(Atmospheric Cloud Model Optimization:雲モデル最適化)アルゴリズムの実装について、さらに詳しく掘り下げていきます。特に、低気圧領域への雲の移動および水滴の初期化と雲間での分布を含む降雨シミュレーションという2つの重要な側面に焦点を当てます。また、雲の状態を管理し、環境との相互作用を適切に保つために重要な役割を果たす他の手法についても紹介します。
preview
PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度

PythonとMQL5を使用した特徴量エンジニアリング(第2回):価格の角度

MQL5フォーラムには、価格変動の傾斜を計算する方法についての支援を求める投稿が多数あります。この記事では、取引したい市場における価格の変化によって形成される角度を計算する1つの方法を説明します。さらに、この新しい特徴量の設計に追加の労力と時間を投資する価値があるかどうかについてもお答えします。M1でUSDZARペアを予測する際に、価格の傾斜によってAIモデルの精度が向上するかどうかを調査します。
preview
プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper

プライスアクション分析ツールキットの開発(第6回):Mean Reversion Signal Reaper

いくつかの概念は一見するとシンプルに思えるかもしれませんが、実際にそれを形にするのは想像以上に難しいことがあります。この記事では、平均回帰(Mean Reversion)戦略を用いて市場を巧みに分析するエキスパートアドバイザー(EA)の自動化に取り組んだ、革新的なアプローチをご紹介します。この魅力的な自動化プロセスの奥深さを、一緒に紐解いていきましょう。
preview
初級から中級まで:テンプレートとtypename(I)

初級から中級まで:テンプレートとtypename(I)

この記事では、多くの初心者が避けがちな概念の1つを取り上げます。これはテンプレートに関連する話題で、多くの人がテンプレートの基本原理を理解していないため、決して簡単なテーマではありません。その基本原理とは、関数や手続きのオーバーロードです。