MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第2回):テスト用の合成シンボルの作成

金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第2回):テスト用の合成シンボルの作成

この記事では、敵対的生成ネットワーク(GAN)を使用して合成シンボルを作成し、EURUSDなどの実際の市場商品の挙動を模倣した現実的な金融データを生成します。GANモデルは、過去の市場データからパターンやボラティリティを学習し、同様の特性を持つ合成価格データを生成します。
preview
マーケットプロファイルインジケーター

マーケットプロファイルインジケーター

この記事では、マーケットプロファイルインジケーターについて考察します。この名前の背後に何があるのかを探り、その動作原理を理解し、さらに端末版(MarketProfile)も見ていきます。
preview
リプレイシステムの開発(第75回):新しいChart Trade(II)

リプレイシステムの開発(第75回):新しいChart Trade(II)

この記事では、C_ChartFloatingRADクラスについて説明します。これはChart Tradeを機能させるための要となる部分です。ただし、解説はこれで終わりではありません。本記事の内容はかなり広範かつ深い理解を必要とするため、続きは次回の記事で補完します。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
preview
MQL5での暗号化の探索:ステップごとのアプローチ

MQL5での暗号化の探索:ステップごとのアプローチ

この記事では、MQL5内での暗号化の統合について探り、取引アルゴリズムのセキュリティと機能を強化する方法を紹介します。主要な暗号化手法と、それらを自動取引に実際に実装する方法について説明します。
preview
取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

取引チャート上で双三次補間を用いたリソース駆動型画像スケーリングによる動的MQL5グラフィカルインターフェイスの作成

本記事では、取引チャート上で高品質な画像スケーリングを実現するために、双三次補間(バイキュービック補間)を使用した動的なMQL5グラフィカルインターフェイスについて解説します。カスタムオフセットによる動的な中央配置やコーナーアンカーなど、柔軟なポジショニングオプションも紹介します。
preview
プライスアクション分析ツールキットの開発(第25回):Dual EMA Fractal Breaker

プライスアクション分析ツールキットの開発(第25回):Dual EMA Fractal Breaker

プライスアクションは、利益を生む取引機会を特定するための基本的なアプローチです。しかし、価格の動きやパターンを手動で監視することは、非常に手間がかかり、時間も消費します。そこで、本記事では、プライスアクションを自動的に分析し、潜在的な取引機会が検出されるたびにタイムリーなシグナルを提供するツールを開発する取り組みを紹介します。特に、フラクタルのブレイクアウトとEMA 14、EMA 200を組み合わせて信頼性の高い取引シグナルを生成する堅牢なツールを紹介し、トレーダーがより自信を持って意思決定できるよう支援します。
preview
リプレイシステムの開発(第76回):新しいChart Trade(III)

リプレイシステムの開発(第76回):新しいChart Trade(III)

この記事では、前回の記事で省略されていたDispatchMessageのコードがどのように動作するのかを見ていきます。さらに、次回の記事のテーマについても紹介します。そのため、次のトピックに進む前に、このコードの仕組みを理解しておくことが重要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
preview
高度なICT取引システムの開発:オーダーブロックインジケーターでのシグナルの実装

高度なICT取引システムの開発:オーダーブロックインジケーターでのシグナルの実装

この記事では、板情報(オーダーブックの数量)に基づいてオーダーブロックインジケーターを開発し、バッファを使用して最適化し、精度を向上させる方法を学習します。これにより、プロジェクトの現段階が終了し、リスク管理クラスとインジケーターによって生成されたシグナルを使用する取引ボットの実装を含む次の段階の準備が整います。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

MQL5で取引管理者パネルを作成する(第9回):コード編成(I)モジュール化

本ディスカッションでは、MQL5プログラムをより小さく扱いやすいモジュールに分割する一歩を踏み出します。これらのモジュール化されたコンポーネントをメインプログラムに統合することで、構造が整理され保守性が向上します。この手法によりメインプログラムの構造が簡素化されるだけでなく、各コンポーネントを他のエキスパートアドバイザー(EA)やインジケーター開発にも再利用可能にします。モジュール設計を採用することで、将来的な機能拡張の基盤を確立し、私たちのプロジェクトだけでなく広く開発者コミュニティにも貢献できるものとなります。
preview
知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化

知っておくべきMQL5ウィザードのテクニック(第78回):ゲーター&A/Dオシレーター戦略による市場耐性の強化

本記事では、ゲーターオシレーターとA/Dオシレーターを用いた取引の体系的アプローチの後半部分を紹介します。新たに5つのパターンを導入することで、偽の動きをフィルタリングし、早期の反転を検出し、時間軸をまたいでシグナルを整合させる方法を示します。明確なコーディング例とパフォーマンステストを通じて、この資料は理論と実践をMQL5開発者向けに橋渡ししています。
preview
初級から中級へ:Includeディレクティブ

初級から中級へ:Includeディレクティブ

本日の記事では、MQL5のさまざまなコードで広く使用されているコンパイルディレクティブについて解説します。本稿ではこのディレクティブについて表面的な説明に留めますが、今後プログラミングレベルが上がるにつれて不可欠なものとなるため、使い方を理解し始めることが重要です。ここで提示されるコンテンツは、教育目的のみを目的としています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(SAMformer)

Transformerモデルの学習には大量のデータが必要であり、小規模データセットに対しては汎化性能が低いため、学習はしばしば困難です。SAMformerフレームワークは、この問題を回避し、不良な局所最小値に陥ることを防ぐことで解決を助けます。これにより、限られた学習データセットにおいてもモデルの効率が向上します。
preview
母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団最適化アルゴリズム:極値から抜け出す力(第II部)

母集団の多様性が低いときに効率的に極小値を脱出して最大値に到達する能力という観点から、母集団最適化アルゴリズムの挙動を調べることを目的とした実験を続けます。研究結果が提供されます。
preview
知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

知っておくべきMQL5ウィザードのテクニック(第47回):時間差分を用いた強化学習

時間差分学習は、エージェントの訓練中に予測された報酬と実際の報酬の差に基づいてQ値を更新する強化学習のアルゴリズムの一つです。特に、状態と行動のペアにこだわらずにQ値を更新する点に特徴があります。したがって、これまでの記事と同様に、ウィザードで作成したエキスパートアドバイザー(EA)での適用方法を検討していきます。
preview
取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)

この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。
preview
プライスアクション分析ツールキットの開発(第28回):Opening Range Breakout Tool

プライスアクション分析ツールキットの開発(第28回):Opening Range Breakout Tool

各取引セッションの始まりでは、市場の方向性の偏りは、価格が初期価格幅(オープニングレンジ)を突破して初めて明確になります。本記事では、MQL5エキスパートアドバイザー(EA)を構築し、セッション開始直後の初期価格幅のブレイクアウトを自動的に検出して分析し、タイムリーでデータ駆動型のシグナルを提供して自信ある日中エントリーを可能にする方法を探ります。
preview
リプレイシステムの開発(第74回):新しいChart Trade(I)

リプレイシステムの開発(第74回):新しいChart Trade(I)

この記事では、Chart Tradeに関する本連載の最後に示したコードを修正します。これらの変更は、現在のリプレイ/シミュレーションシステムのモデルにコードを適合させるために必要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。
preview
MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

MQL5取引ツール(第2回):インタラクティブな取引アシスタントの強化:動的視覚フィードバックの導入

この記事では、取引アシスタントツール(Trade Assistant Tool)をアップグレードし、ドラッグ&ドロップ可能なパネル機能やホバー効果を追加して、インターフェースをより直感的で応答性の高いものにします。ツールを改良してリアルタイムの注文設定を検証し、市場価格に対して正確な取引構成が可能となるようにします。また、これらの改善をバックテストし、その信頼性を確認します。
preview
MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築

MQL5取引ツール(第3回):戦略的取引のための多時間軸スキャナーダッシュボードの構築

本記事では、MQL5で多時間軸スキャナーダッシュボードを構築し、リアルタイムの取引シグナルを表示する方法を解説します。インタラクティブなグリッドインターフェースの設計、複数のインジケーターによるシグナル計算の実装、そしてクローズボタンの追加を計画しています。記事はバックテストと戦略的取引の利点で締めくくられます。
preview
Connexusの本体(第4回):HTTP本体サポートの追加

Connexusの本体(第4回):HTTP本体サポートの追加

この記事では、JSONやプレーンテキストなどのデータを送信するために不可欠な、HTTPリクエストにおける本体(ボディ)の概念について探りました。適切なヘッダを使った正しい使い方を議論し、説明しました。また、Connexusライブラリの一部であるChttpBodyクラスを導入し、リクエストの本体の処理を簡素化しました。
preview
取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

取引におけるニューラルネットワーク:対照パターンTransformer(最終回)

本連載の前回の記事では、Atom-Motif Contrastive Transformer (AMCT)フレームワークについて取り上げました。これは、対照学習を用いて、基本要素から複雑な構造に至るまでのあらゆるレベルで重要なパターンを発見することを目的とした手法です。この記事では、MQL5を用いたAMCTアプローチの実装を引き続き解説していきます。
preview
MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

MQL5で取引管理者パネルを作成する(第7回):信頼できるユーザー、回復、暗号化

チャートの更新や管理パネル(Admin Panel) EAとのチャットに新しいペアを追加する際、または端末を再起動するたびにトリガーされるセキュリティプロンプトは、時に煩わしく感じられることがあります。このディスカッションでは、ログイン試行回数を追跡して信頼できるユーザーを識別する機能を検討し、実装します。一定回数の試行に失敗した場合、アプリケーションは高度なログイン手続きに移行し、パスコードを忘れたユーザーが回復できるようにします。さらに、管理パネルに暗号化を効果的に統合してセキュリティを強化する方法についても取り上げます。
preview
最適化におけるカスタム基準への新しいアプローチ(第1回):活性化関数の例

最適化におけるカスタム基準への新しいアプローチ(第1回):活性化関数の例

これは、カスタム基準に関する数学的考察をおこなう連載記事の第1回目です。特に、ニューラルネットワークで使用される非線形関数、実装用のMQL5コード、さらにターゲットオフセットや補正オフセットの活用に焦点を当てています。
preview
知っておくべきMQL5ウィザードのテクニック(第69回):SARとRVIのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第69回):SARとRVIのパターンの使用

パラボリックSAR (SAR)と相対活力指数(RVI)は、MQL5のエキスパートアドバイザー(EA)内で併用可能なもう一つのインジケーターペアです。このインジケーターペアは、これまでに取り上げたものと同様に補完的で、SARはトレンドを定義し、RVIはモメンタムを確認します。通常通り、MQL5ウィザードを使用してこのインジケーターペアリングを構築し、その可能性をテストします。
preview
ニューラルネットワークの実践:ニューロンのスケッチ

ニューラルネットワークの実践:ニューロンのスケッチ

この記事では、基本的なニューロンを作ります。単純に見えるし、多くの人はこのコードをまったくつまらない無意味なものだと考えるかもしれませんが、このニューロンの単純なスケッチを楽しく勉強してほしいと思います。コードを修正することを恐れず、完全に理解することが目標です。
preview
動物移動最適化(AMO)アルゴリズム

動物移動最適化(AMO)アルゴリズム

この記事は、生命と繁殖に最適な条件を求めて動物が季節的に移動する様子をモデル化するAMOアルゴリズムについて説明しています。AMOの主な機能には、トポロジカル近傍の使用と確率的更新メカニズムが含まれており、実装が容易で、さまざまな最適化タスクに柔軟に対応できます。
preview
取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

取引におけるニューラルネットワーク:二重アテンションベースのトレンド予測モデル

前回の記事で取り上げた時系列の区分線形表現の活用について、引き続き議論します。本日は、この手法を他の時系列分析手法と組み合わせることで、価格動向の予測精度を向上させる方法を探ります。
preview
適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

適応型社会行動最適化(ASBO):Schwefel、ボックス=ミュラー法

この記事は、生物の社会的行動の世界と、それが新たな数学モデルであるASBO(適応型社会的行動最適化、Adaptive Social Behavior Optimization)の構築に与える影響について、興味深い洞察を提供します。生物社会におけるリーダーシップ、近隣関係、協力の原則が、革新的な最適化アルゴリズムの開発にどのように着想を与えるのかを探ります。
preview
原子軌道探索(AOS)アルゴリズム

原子軌道探索(AOS)アルゴリズム

この記事では、原子軌道モデルの概念を利用して解を探索する原子軌道検索(AOS:Atomic Orbital Search)アルゴリズムについて考えます。AOSは、原子内における確率分布や相互作用のダイナミクスに基づいており、解の探索プロセスをシミュレートするアルゴリズムです。この記事では、候補解の位置更新やエネルギーの吸収・放出のメカニズムを含めたAOSの数学的な側面について詳しく説明します。AOSは、量子力学の原理を計算問題に応用する新たな可能性を切り開く、革新的な最適化手法です。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析(2) - 加重投票方策

MQL5で自己最適化エキスパートアドバイザーを構築する(第8回):複数戦略分析(2) - 加重投票方策

本記事では、アンサンブル内で最適な戦略数を決定することがどれほど複雑な課題であるか、その解決がMetaTrader 5の遺伝的アルゴリズム最適化ツールを用いることで容易になるかを検討します。さらに、バックテストおよび最適化の高速化を目的として、MQL5クラウドも主要なリソースとして活用します。これらの議論を通じて、初期のアンサンブル結果に基づき、取引戦略を評価し、改善するための統計モデルを開発するための基盤を整えることを目的としています。
preview
プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出

プライスアクション分析ツールキットの開発(第32回):Python Candlestick Recognitionエンジン(II) - Ta-Libを用いた検出

本記事では、Pythonでローソク足パターンを手動で検出していた前回の方法から一歩進み、TA-Libを活用した自動検出手法へと移行します。TA-Libは、60種類以上の異なるローソク足パターンを認識できる強力なテクニカル分析ライブラリです。これらのパターンは、市場の反転やトレンド継続の可能性を読み取る上で有用なインサイトを提供します。ぜひ最後までお読みください。
preview
適応型社会行動最適化(ASBO):二段階の進化

適応型社会行動最適化(ASBO):二段階の進化

生物の社会的行動と、それが新しい数学モデルであるASBO(適応型社会的行動最適化)の開発に与える影響について、引き続き考察していきます。今回は、二段階の進化プロセスを詳しく分析し、アルゴリズムをテストした上で結論を導き出します。自然界において生物の集団が生存のために協力するのと同様に、ASBOも集団行動の原理を活用し、複雑な最適化問題を解決します。
preview
初級から中級まで:共用体(II)

初級から中級まで:共用体(II)

今日はとても面白く興味深い記事をご紹介します。今回は共用体(union)を取り上げ、以前に触れた問題の解決を試みます。また、アプリケーションでunionを使用した際に発生しうる、少し変わった状況についても探っていきます。ここで提示される資料は教育目的のみに使用されます。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

取引におけるニューラルネットワーク:階層型ベクトルTransformer(最終回)

階層的ベクトルTransformer法の研究を引き続き進めていきます。本記事では、モデルの構築を完了し、実際の履歴データを用いて訓練およびテストをおこないます。
preview
知っておくべきMQL5ウィザードのテクニック(第64回):ホワイトノイズカーネルでDeMarkerとEnvelope Channelsのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第64回):ホワイトノイズカーネルでDeMarkerとEnvelope Channelsのパターンを活用する

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。前回の記事では、機械学習を加えて、これらのインジケーターのペアを紹介しました。ホワイトノイズカーネルを使用してこれら2つのインジケーターからのベクトル化されたシグナルを処理する回帰型ニューラルネットワークを使用しています。これは、MQL5ウィザードと連携してエキスパートアドバイザー(EA)を組み立てるカスタムシグナルクラスファイルで実行されます。
preview
金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第1回):金融モデリングにおけるGANと合成データの紹介

金融モデリングにおける合成データのための敵対的生成ネットワーク(GAN)(第1回):金融モデリングにおけるGANと合成データの紹介

この記事では、モデル訓練におけるデータの制限に対処しながら、合成金融データを生成するための敵対的生成ネットワーク(GAN)をトレーダーに紹介します。GANの基礎、PythonおよびMQL5コードの実装、金融における実用的なアプリケーションをカバーし、トレーダーが合成データを通じてモデルの精度と堅牢性を高めることができるようにします。
preview
受信者動作特性曲線の紹介

受信者動作特性曲線の紹介

ROC曲線は、分類器の性能を評価するために使用されるグラフ表現です。ROC曲線は比較的単純に見えますが、実際に使用する際には、よくある誤解や陥りやすい落とし穴があります。この記事の目的は、分類器の性能評価を理解しようとする実務者に向けて、ROC曲線を紹介することです。
preview
データサイエンスとML(第38回):外国為替市場におけるAI転移学習

データサイエンスとML(第38回):外国為替市場におけるAI転移学習

AIの画期的な進歩、たとえばChatGPTや自動運転車などは、単独のモデルから生まれたわけではなく、複数のモデルや共通の分野から得られた累積的な知識を活用することで実現しています。この「一度学習した知識を他に応用する」というアプローチは、アルゴリズム取引におけるAIモデルの変革にも応用可能です。本記事では、異なる金融商品の情報を活用し、他の銘柄における予測精度向上に役立てる方法として、転移学習の活用方法について解説します。
preview
データサイエンスとML(第40回):機械学習データにおけるフィボナッチリトレースメントの利用

データサイエンスとML(第40回):機械学習データにおけるフィボナッチリトレースメントの利用

フィボナッチリトレースメントはテクニカル分析で人気のツールであり、トレーダーが潜在的な反転ゾーンを特定するのに役立ちます。本記事では、これらのリトレースメントレベルを機械学習モデルの目的変数に変換し、この強力なツールを使用して市場をより深く理解できるようにする方法について説明します。
preview
Pythonによる農業国通貨への天候影響分析

Pythonによる農業国通貨への天候影響分析

天候と外国為替にはどのような関係があるのでしょうか。古典的な経済理論は、天候のような要因が市場の動きに与える影響を長い間無視してきました。しかし、すべてが変わりました。天候条件と農業通貨の市場でのポジションとの間に、どのようなつながりがあるのかを探ってみましょう。