MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
取引システムの構築(第5回):構造化された取引決済による利益管理

取引システムの構築(第5回):構造化された取引決済による利益管理

利益目標まであとわずかというところで価格が反転し、ストップロスにかかってしまう。トレーリングストップによって建値で決済された直後に、市場が元の方向へ大きく動き、当初の目標を超えていく。多くのトレーダーにとって、これはおなじみの悩みでしょう。本記事では、異なるリスクリワードレシオ(RRR)で複数のエントリーを配置する手法に焦点を当て、利益を体系的に確保しながら、全体のリスク曝露を抑えるアプローチを解説します。
preview
リプレイシステムの開発 - 市場シミュレーション(第22回):FOREX (III)

リプレイシステムの開発 - 市場シミュレーション(第22回):FOREX (III)

このトピックに関する記事は今回で3回目になりますが、株式市場とFOREX市場の違いをまだ理解していない方のために説明しなければなりません。大きな違いは、FOREXでは、取引の過程で実際に発生したいくつかのポイントに関する情報がないというか、与えられないということです。
preview
彗尾アルゴリズム(CTA)

彗尾アルゴリズム(CTA)

この記事では、ユニークな宇宙物体である彗星と、太陽に接近する際に形成されるその印象的な尾にインスパイアされた「彗尾最適化アルゴリズム(CTA: Comet Tail Algorithm)」について考察します。このアルゴリズムは、彗星とその尾の運動の概念に基づき、最適化問題の最適解を見つけることを目的としています。
preview
取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

取引におけるニューラルネットワーク:時空間ニューラルネットワーク(STNN)

この記事では、時空間変換を活用し、今後の価格変動を効果的に予測する手法について解説します。STNNの数値予測精度を向上させるために、データの重要な側面をより適切に考慮できる連続アテンションメカニズムが提案されています。
preview
プライスアクション分析ツールキットの開発(第4回):Analytics Forecaster EA

プライスアクション分析ツールキットの開発(第4回):Analytics Forecaster EA

チャート上に表示された分析済みのメトリックを見るだけにとどまらず、Telegramとの統合によってブロードキャストを拡張するという、より広い視点へと移行しています。この機能強化により、Telegramアプリを通じて、重要な結果がモバイルデバイスに直接配信されるようになります。この記事では、この新たな取り組みを一緒に探っていきましょう。
preview
MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

MQL5取引ツールキット(第5回):ポジション関数による履歴管理EX5ライブラリの拡張

エクスポート可能なEX5関数を作成して、過去のポジションデータを効率的にクエリおよび保存する方法を解説します。このステップバイステップのガイドでは、直近にクローズされたポジションの主要なプロパティを取得するモジュールを開発し、HistoryManagement EX5ライブラリを拡張していきます。対象となるプロパティには、純利益、取引時間、ピップ単位でのストップロスやテイクプロフィット、利益値、その他多くの重要な情報が含まれます。
preview
知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

知っておくべきMQL5ウィザードのテクニック(第31回):損失関数の選択

損失関数は、機械学習アルゴリズムの重要な指標です。これは、与えられたパラメータセットが目標に対してどれだけうまく機能しているかを定量的に評価し、学習プロセスにフィードバックを提供する役割を果たします。本記事では、MQL5のカスタムウィザードクラスを使って、損失関数のさまざまな形式を探っていきます。
preview
MQL5で取引管理者パネルを作成する(第9回):コード編成(I)

MQL5で取引管理者パネルを作成する(第9回):コード編成(I)

このディスカッションでは、大規模なコードベースを扱う際に直面する課題について掘り下げます。MQL5におけるコード構成のベストプラクティスを紹介し、取引管理パネルのソースコードの可読性と拡張性を向上させるための実践的なアプローチを実装します。また、他の開発者がアルゴリズム開発で活用できる再利用可能なコードコンポーネントの開発も目指しています。ぜひ最後までお読みいただき、ご意見をお寄せください。
preview
MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

MQL5でのカスタム市場レジーム検出システムの構築(第2回):エキスパートアドバイザー

この記事では、第1回で紹介したレジーム検出器を用いて、適応型のエキスパートアドバイザー(EA)、MarketRegimeEAを構築する方法を詳しく解説しています。このEAは、トレンド相場、レンジ相場、またはボラティリティの高い相場に応じて、取引戦略やリスクパラメータを自動的に切り替えます。実用的な最適化、移行時の処理、多時間枠インジケーターも含まれています。
preview
知っておくべきMQL5ウィザードのテクニック(第80回):TD3強化学習で一目均衡表とADX-Wilderのパターンを使用する

知っておくべきMQL5ウィザードのテクニック(第80回):TD3強化学習で一目均衡表とADX-Wilderのパターンを使用する

本記事は第74回の続編です。第74回では、教師あり学習の枠組みにおける一目均衡表とADXの組み合わせを検討しました。本記事では焦点を強化学習に移します。一目均衡表とADXは、サポート/レジスタンスの把握とトレンドの強さの検出という点で、互いに補完し合う組み合わせを形成します。今回は、TD3 (Twin Delayed Deep Deterministic Policy Gradient)アルゴリズムをこのインジケーターセットでどのように活用できるかを詳しく解説します。前回までと同様に、実装はMQL5ウィザードに統合できるカスタムシグナルクラスとしておこないます。MQL5ウィザードを使用すると、エキスパートアドバイザー(EA)の構築をスムーズに進めることが可能です。
preview
MQL5での取引戦略の自動化(第17回):ダイナミックダッシュボードで実践するグリッドマーチンゲールスキャルピング戦略

MQL5での取引戦略の自動化(第17回):ダイナミックダッシュボードで実践するグリッドマーチンゲールスキャルピング戦略

本記事では、グリッドマーチンゲールスキャルピング戦略(Grid-Mart Scalping Strategy)を探究し、MQL5による自動化と、リアルタイム取引インサイトを提供するダイナミックダッシュボードの構築をおこないます。本戦略のグリッド型マーチンゲールロジックとリスク管理機能を詳述し、さらに堅牢なパフォーマンスのためのバックテストおよび実運用展開についても案内します。
preview
ALGLIBライブラリの最適化手法(第1回):

ALGLIBライブラリの最適化手法(第1回):

この記事では、MQL5におけるALGLIBライブラリの最適化手法について紹介します。記事には、最適化問題を解決するためにALGLIBを使用するシンプルで分かりやすい例が含まれており、これらの手法をできるだけ身近に感じられるように構成されています。BLEIC、L-BFGS、NSといったアルゴリズムのつながりを詳しく見ていき、それらを使って簡単なテスト問題を解いてみます。
preview
JSONをマスターする:MQL5で独自のJSONリーダーをゼロから作成する

JSONをマスターする:MQL5で独自のJSONリーダーをゼロから作成する

オブジェクトと配列の処理、エラーチェック、シリアル化を備えたMQL5でカスタムJSONパーサーを作成する手順をステップバイステップで説明します。MetaTrader5でJSONを処理するためのこの柔軟なソリューションを使用して、取引ロジックと構造化データを橋渡しするための実用的な洞察を得ることができます。
preview
MQL5とデータ処理パッケージの統合(第5回):適応学習と柔軟性

MQL5とデータ処理パッケージの統合(第5回):適応学習と柔軟性

今回は、過去のXAU/USDデータを用いて柔軟で適応的な取引モデルを構築し、ONNX形式でのエクスポートや実際の取引システムへの統合に備えることに焦点を当てます。
preview
亀甲進化アルゴリズム(TSEA)

亀甲進化アルゴリズム(TSEA)

これは、亀の甲羅の進化にインスパイアされたユニークな最適化アルゴリズムです。TSEAアルゴリズムは、問題に対する最適解を表す構造化された皮膚領域が徐々に形成される様子をエミュレートします。最良の解は「硬く」なり、外側に近い位置に配置され、成功しなかった解は「柔らかい」ままで内側に留まります。このアルゴリズムは、質と距離に基づく解のクラスタリングを利用し、成功率の低い選択肢を保持しながら、柔軟性と適応性を提供します。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

MQL5-Telegram統合エキスパートアドバイザーの作成(第3回):MQL5からTelegramにキャプション付きチャートのスクリーンショットを送信する

この記事では、チャートのスクリーンショットを画像データとしてエンコードし、HTTPリクエストを通じてTelegramチャットに送信するMQL5のエキスパートアドバイザー(EA)を作成します。この画像のエンコードと送信の統合によって、既存のMQL5-Telegramシステムが強化され、Telegram上で直接視覚的な取引洞察を提供できるようになります。
preview
MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加

MQL5-Telegram統合エキスパートアドバイザーの作成(第6回):レスポンシブなインラインボタンの追加

この記事では、インタラクティブなインラインボタンをMQL5エキスパートアドバイザー(EA)に統合し、Telegram経由でリアルタイムにコントロールできるようにします。各ボタンを押すたびに特定のアクションがトリガーされ、ユーザーにレスポンスが返されます。また、Telegramメッセージやコールバッククエリを効率的に処理するための関数もモジュール化します。
preview
取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

取引におけるニューラルネットワーク:相対エンコーディング対応Transformer

自己教師あり学習は、ラベル付けされていない大量のデータを分析する効果的な手段となり得ます。この手法の効率性は、モデルが金融市場特有の特徴に適応することで実現され、従来手法の有効性も向上します。本記事では、入力間の相対的な依存関係や関係性を考慮した新しいAttention(注意)機構を紹介します。
preview
古典的な戦略を再構築する(第14回):高確率セットアップ

古典的な戦略を再構築する(第14回):高確率セットアップ

高確率セットアップ(high probability setups)は、私たちの取引コミュニティではよく知られていますが、残念ながら明確には定義されていません。この記事では、「高確率セットアップ」とは具体的に何かを、経験的かつアルゴリズム的な方法で定義し、それを特定して活用することを目指します。勾配ブースティング木を用いることで、任意の取引戦略のパフォーマンスを向上させる方法、そしてコンピュータに対して「何をすべきか」をより明確かつ意味のある形で伝える手段を、読者に示します。
preview
リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

リプレイシステムの開発(第45回):Chart Tradeプロジェクト(IV)

この記事の主な目的は、C_ChartFloatingRADクラスの紹介と説明です。Chart Trade指標は、非常に興味深い方法で機能しています。チャート上のオブジェクトの数はまだ少ないものの、期待通りの機能を実現しています。指標の値は編集可能ですが、その実現方法については疑問が残るかもしれません。この記事を読めば、これらの疑問が解消されるでしょう。
preview
段階的特徴量選択の基準としての相互情報量

段階的特徴量選択の基準としての相互情報量

この記事では、最適な予測変数セットと目的変数との相互情報量に基づく段階的特徴量選択のMQL5実装を紹介します。
preview
MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

MQL5での取引戦略の自動化(第6回):スマートマネートレーディングのためのオーダーブロック検出の習得

この記事では、純粋なプライスアクション分析を用いてMQL5でオーダーブロック検出を自動化します。オーダーブロックの定義、検出の実装、自動売買への統合をおこない、最後に戦略のバックテストを通じてパフォーマンスを評価します。
preview
MQL5における段階的特徴量選択

MQL5における段階的特徴量選択

この記事では、MQL5で実装された段階的特徴量選択の修正バージョンを紹介します。このアプローチは、Timothy Masters著の「Modern Data Mining Algorithms in C++ and CUDA C」で概説されている手法に基づいています。
preview
汎用MLP近似器に基づくエキスパートアドバイザー

汎用MLP近似器に基づくエキスパートアドバイザー

この記事では、機械学習の深い知識がなくても利用できる、取引EAでのニューラルネットワークの簡単でアクセスしやすい使用方法を紹介しています。この方法では、目的関数の正規化を省略できるほか、「重みの爆発」や「収束停止」といった問題を解消し、直感的な学習と結果の視覚的な管理を可能にしています。
preview
金融時系列予測のための生物学的ニューロン

金融時系列予測のための生物学的ニューロン

時系列予測のために生物学的に正しいニューロンシステムを構築します。ニューラルネットワークのアーキテクチャにプラズマ的な環境を導入することで、一種の「集合知」が生まれます。そこでは、各ニューロンが直接的な結合だけでなく、長距離の電磁相互作用を通じてもシステム全体の動作に影響を与えます。このようなニューラル脳モデリングシステムが市場においてどのような性能を発揮するのかを見ていきます。
preview
Developing a Replay System (Part 36): Making Adjustments (II)

Developing a Replay System (Part 36): Making Adjustments (II)

One of the things that can make our lives as programmers difficult is assumptions. In this article, I will show you how dangerous it is to make assumptions: both in MQL5 programming, where you assume that the type will have a certain value, and in MetaTrader 5, where you assume that different servers work the same.
preview
リプレイシステムの開発(第39回):道を切り開く(III)

リプレイシステムの開発(第39回):道を切り開く(III)

開発の第2段階に進む前に、いくつかのアイデアを修正する必要があります。MQL5に必要なことをさせる方法をご存知ですか。ドキュメントに書かれている以上のことをしようとしたことはありますか。そうでないなら、準備をしましょう。ここでは、ほとんどの人が普段やらないことをやるからです。
preview
プライスアクション分析ツールキットの開発(第35回):予測モデルの学習とデプロイ

プライスアクション分析ツールキットの開発(第35回):予測モデルの学習とデプロイ

履歴データは決して「ゴミ」ではありません。それは、堅牢な市場分析の基盤です。本記事では、履歴データの収集から、それを用いた予測モデルの学習、そして学習済みモデルを用いたリアルタイムの価格予測のデプロイまでを、ステップごとに解説します。ぜひ最後までお読みください。
preview
MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化

MQL5とデータ処理パッケージの統合(第3回):データ可視化の強化

この記事では、基本的なチャートの枠を超え、インタラクティブ性、データの層化、ダイナミックな要素といった機能を組み込むことで、トレーダーがトレンド、パターン、相関関係をより効果的に探求できるようにする、データ可視化の高度化について解説します。
preview
MQL5取引ツール(第1回):インタラクティブで視覚的なペンディングオーダー取引アシスタントツールの構築

MQL5取引ツール(第1回):インタラクティブで視覚的なペンディングオーダー取引アシスタントツールの構築

この記事では、FX取引におけるペンディングオーダーの設置を簡素化するために開発した、MQL5によるインタラクティブ取引アシスタントツール(Trade Assistant Tool)について紹介します。まず概念設計を説明し、チャート上でエントリー、ストップロス、テイクプロフィット水準を視覚的に設定できるユーザーフレンドリーなGUIに焦点を当てます。さらに、MQL5での実装およびバックテストのプロセスを詳述し、このツールの信頼性を確認します。そして、後続のパートで発展的な機能を追加するための基盤を整えます。
preview
古典的な戦略を再構築する(第16回):ダブルボリンジャーバンドブレイクアウト

古典的な戦略を再構築する(第16回):ダブルボリンジャーバンドブレイクアウト

本記事では、古典的なボリンジャーバンドのブレイクアウト戦略を再考し、その弱点を補う手法を紹介します。古典的戦略は、偽のブレイクアウトに弱いというよく知られた課題があります。本記事では、その弱点に対する一つの解決策として「ダブルボリンジャーバンド戦略」を提示します。この比較的知られていない手法は、従来戦略の弱点を補い、市場をより動的に捉える視点を提供します。これにより、従来のルールに縛られた制約を超え、トレーダーにとってより適応力のあるフレームワークを提供できるのです。
preview
知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

知っておくべきMQL5ウィザードのテクニック(第43回):SARSAによる強化学習

SARSAは、State-Action-Reward-State-Actionの略で、強化学習を実装する際に使用できる別のアルゴリズムです。Q学習とDQNで見たように、ウィザードで組み立てられたエキスパートアドバイザー(EA)の中で、これを単なる訓練メカニズムとしてではなく、独立したモデルとしてどのように実装できるかを検討します。
preview
アンサンブル学習におけるゲーティングメカニズム

アンサンブル学習におけるゲーティングメカニズム

この記事では、アンサンブルモデルの検討をさらに進め、「ゲート」という概念に注目し、モデル出力を組み合わせることで予測精度や汎化性能の向上にどのように役立つかを解説します。
preview
初級から中級まで:オーバーロード

初級から中級まで:オーバーロード

おそらく、この記事は初心者プログラマーにとって最も混乱を招くものになるでしょう。実際のところ、ここでは、同じコード内で必ずしもすべての関数や手続きが一意の名前を持つとは限らないことを示します。同じ名前の関数や手続きを使うことができるのです。これをオーバーロードと呼びます。
preview
取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

取引におけるニューラルネットワーク:制御されたセグメンテーション(最終部)

前回の記事で開始した、MQL5を使用したRefMask3Dフレームワークの構築作業を引き続き進めていきます。このフレームワークは、点群におけるマルチモーダルインタラクションと特徴量解析を包括的に研究し、自然言語で提供される説明に基づいてターゲットオブジェクトを特定・識別することを目的としています。
preview
DoEasy-コントロール(第19部):TabControl、WinFormsオブジェクトイベントでのタブのスクロール

DoEasy-コントロール(第19部):TabControl、WinFormsオブジェクトイベントでのタブのスクロール

この記事では、スクロールボタンを使用してTabControlでタブヘッダーをスクロールする機能を作成します。この機能は、コントロールの両方側からタブヘッダーを1行に配置するためのものです。
preview
リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

リプレイシステムの開発(第43回):Chart Traderプロジェクト(II)

プログラミングを学びたいと夢見る人のほとんどは、実際に自分が何をしているのかわかっていません。彼らの活動は、ある方法で物事を創造しようとすることから成っています。しかし、プログラミングとは、適切な解決策を仕立てることではありません。このようなやり方は、解決策よりも多くの問題を引き起こす可能性があります。ここでは、より高度で、それゆえに異なることをします。
preview
MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

MQL5経済指標カレンダーを使った取引(第2回):ニュースダッシュボードパネルの作成

この記事では、MQL5経済指標カレンダーを使用して、取引戦略を強化するための実用的なニュースダッシュボードパネルを作成します。まず、イベント名、重要度、タイミングなどの重要な要素に焦点を当ててレイアウトを設計し、その後、MQL5内でのセットアップに進みます。最後に、最も関連性の高いニュースのみを表示するフィルタリングシステムを実装し、トレーダーが影響力のある経済イベントに迅速にアクセスできるようにします。
preview
知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習

知っておくべきMQL5ウィザードのテクニック(第51回):SACによる強化学習

Soft Actor Criticは、Actorネットワーク1つとCriticネットワーク2つ、合計3つのニューラルネットワークを用いる強化学習アルゴリズムです。これらのモデルは、CriticがActorネットワークの予測精度を高めるように設計された、いわばマスタースレーブの関係で連携します。本連載では、ONNXの導入も兼ねて、こうした概念を、ウィザード形式で構築されたエキスパートアドバイザー(EA)内のカスタムシグナルとしてどのように実装・活用できるかを探っていきます。
preview
ログレコードをマスターする(第4回):ログをファイルに保存する

ログレコードをマスターする(第4回):ログをファイルに保存する

この記事では、基本的なファイル操作と、カスタマイズに対応した柔軟なハンドラの設定方法について紹介します。CLogifyHandlerFileクラスを更新し、ログをファイルに直接書き込むようにします。また、EURUSDで1週間にわたるストラテジーをシミュレーションし、各ティックごとにログを生成して、合計5分11秒のパフォーマンステストを実施します。この結果は今後の記事で比較し、パフォーマンス向上のためにキャッシュシステムの導入もおこなう予定です。