MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

MQL5取引ツール(第5回):リアルタイム銘柄監視のためのローリングティッカーテープの作成

本記事では、MQL5を用いて複数の通貨ペアをリアルタイムで監視できるローリングティッカーテープを開発します。Bid価格(買値)、スプレッド、日次変化率をスクロール表示し、価格変動やトレンドを効果的に強調するために、フォント、色、スクロール速度をカスタマイズ可能にします。
preview
MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

本記事では、直感的なニュースナビゲーションを実現する動的なスクロールバーを追加してMQL5経済指標カレンダーを強化します。シームレスなイベント表示と効率的な更新を保証します。テストを通じて、レスポンシブなスクロールバーと洗練されたダッシュボードを検証します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VI) - ニュース取引のための指値注文戦略

本記事では、ニュースを表示するだけでなく実際に取引を実行できるよう、EA(エキスパートアドバイザー)の機能拡張に焦点を当てます。MQL5上で自動売買の実装方法を解説し、「News Headline EA」を完全に反応的な取引システムへと発展させていきます。EAは、その豊富な機能により、アルゴリズム開発者にとって非常に強力なツールです。これまでの記事では、ニュースおよび経済指標カレンダーイベントの可視化ツールを中心に開発し、AIインサイトレーンやテクニカル指標分析を統合してきました。
preview
MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

MQL5取引ツール(第4回):動的配置とトグル機能による多時間軸スキャナダッシュボードの改善

この記事では、MQL5の多時間軸スキャナーダッシュボードを、移動可能および切り替え機能付きにアップグレードします。ダッシュボードをドラッグできるようにし、画面の使用効率を高めるために最小化/最大化オプションを追加します。これらの機能強化を実装し、テストすることで、より柔軟な取引環境を実現します。
preview
リプレイシステムの開発(第72回):異例のコミュニケーション(I)

リプレイシステムの開発(第72回):異例のコミュニケーション(I)

私たちが本日作成する内容は、理解が難しいものになるでしょう。したがって本稿では、初期段階についてのみ説明します。この段階は次のステップに進むための重要な前提条件となるため、ぜひ注意深く読んでください。この資料の目的はあくまで学習にあります。提示された概念を実際に応用するのではなく、あくまで理解・習得することが目的です。
preview
MetaTrader 5での取引の視覚的な評価と調整

MetaTrader 5での取引の視覚的な評価と調整

ストラテジーテスターは、単に自動売買ロボットのパラメータを最適化するだけでなく、さらに幅広い活用が可能です。本記事では、口座の取引履歴を事後に評価し、ストラテジーテスター上でポジションのストップロスを変更することで取引の調整をおこなう方法を紹介します。
preview
ダイナミックマルチペアEAの形成(第4回):ボラティリティとリスク調整

ダイナミックマルチペアEAの形成(第4回):ボラティリティとリスク調整

このフェーズでは、マルチペアEAを微調整し、ATRなどのボラティリティ指標を活用してリアルタイムで取引サイズとリスクを調整します。これにより、一貫性の向上、資金保護、そしてさまざまな市場状況下でのパフォーマンス改善を実現します。
preview
プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

プライスアクション分析ツールキットの開発(第36回):MetaTrader 5マーケットストリームへ直接アクセスするPython活用法

MetaTrader 5ターミナルの潜在能力を最大限に引き出すために、Pythonのデータサイエンスエコシステムと公式のMetaTrader 5クライアントライブラリを活用する方法を紹介します。本記事では、認証をおこない、ライブティックおよび分足データを直接Parquetストレージにストリーミングする手法を解説し、taやProphetを用いた高度な特徴量エンジニアリングをおこない、時間依存型の勾配ブースティングモデルを学習させる方法を示します。その後、軽量なFlaskサービスを展開して、リアルタイムで取引シグナルを提供します。ハイブリッドクオンツフレームワークを構築する場合でも、エキスパートアドバイザー(EA)に機械学習を組み込む場合でも、データ駆動型アルゴリズム取引のための堅牢なエンドツーエンドパイプラインを習得できます。
preview
プライスアクション分析ツールキットの開発(第41回):MQL5で統計的価格レベルEAを構築する

プライスアクション分析ツールキットの開発(第41回):MQL5で統計的価格レベルEAを構築する

統計は常に金融分析の中心にあります。統計とは、データを収集・分析・解釈・提示し、意味のある情報に変換する学問です。これをローソク足に応用すると、価格の生データを測定可能な洞察に圧縮できます。特定期間における市場の中心傾向、分布、広がりを把握できれば、どれほど有益でしょうか。本記事では、統計的手法を用いてローソク足データを明確で実行可能なシグナルに変換する方法を紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第82回):DQN強化学習でTRIXとWPRのパターンを使用する

知っておくべきMQL5ウィザードのテクニック(第82回):DQN強化学習でTRIXとWPRのパターンを使用する

前回の記事では、推論学習の枠組みにおける一目均衡表とADXの組み合わせを検証しました。本記事では、第68回で最後に取り上げたインジケーターの組み合わせ、すなわちTRIXとWilliams Percent Range (WPR)を対象に、強化学習を再度取り上げます。今回使用するアルゴリズムは、QR-DQN (Quantile Regression DQN)です。これまでと同様に、MQL5ウィザードでの実装を前提としたカスタムシグナルクラスとして提示します。
preview
MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

MQL5経済指標カレンダーを使った取引(第9回):動的スクロールバーと洗練表示によるニュースインタラクション強化

本記事では、直感的なニュースナビゲーションを実現する動的なスクロールバーを追加してMQL5経済指標カレンダーを強化します。シームレスなイベント表示と効率的な更新を保証します。テストを通じて、レスポンシブなスクロールバーと洗練されたダッシュボードを検証します。
preview
リプレイシステムの開発(第66回)サービスの再生(VII)

リプレイシステムの開発(第66回)サービスの再生(VII)

この記事では、チャート上に新しいバーがいつ表示されるかを判断するための、最初のソリューションを実装します。このソリューションは、さまざまな状況に応用可能です。その仕組みを理解することで、いくつかの重要なポイントを把握する助けとなるでしょう。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを閲覧することは避けてください。
preview
PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

PythonとMQL5で構築するマルチモジュール型取引ロボット(第1回):基本アーキテクチャと最初のモジュールの作成

Pythonによるデータ分析とMQL5による取引執行を組み合わせたモジュール型の取引システムを開発します。このシステムは、4つの独立したモジュールによって市場の異なる側面(ボリューム、アービトラージ、経済、リスク)を並行して監視します。ランダムフォレストを400本の決定木で構成したモデルを用いて市場データを分析します。特に本システムでは、リスク管理に重点を置いています。どれほど高度なアルゴリズムであっても、適切なリスク管理がなければ意味がありません。
preview
取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

取引におけるニューラルネットワーク:ウェーブレット変換とマルチタスクアテンションを用いたモデル(最終回)

前回の記事では、Multitask-Stockformerフレームワークを検討しました。このフレームワークは、ウェーブレット変換とマルチタスク自己アテンション(Self-Attention)モデルを組み合わせたものです。本記事では、このフレームワークのアルゴリズムをさらに実装し、実際の過去データを用いてその有効性を評価していきます。
preview
MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

MQL5での取引戦略の自動化(第25回):最小二乗法と動的シグナル生成を備えたTrendline Trader

本記事では、最小二乗法を用いてサポートおよびレジスタンスのトレンドラインを検出し、価格がこれらのラインに触れた際に動的な売買シグナルを生成するTrendline Traderプログラムを開発します。また、生成されたシグナルに基づきポジションをオープンする仕組みも構築します。
preview
初級から中級まで:浮動小数点

初級から中級まで:浮動小数点

この記事は浮動小数点数の概念に関する簡単な入門です。本稿の内容は非常に複雑ですので、注意深く丁寧に読んでください。浮動小数点システムをすぐに完全に理解できるとは思わないでください。浮動小数点は、実際に使って経験を積むことで少しずつ理解できるようになります。しかし、この記事を読むことで、なぜアプリケーションの結果が期待と異なる場合があるのか、その理由を理解する手助けになるでしょう。
preview
取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現

NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。
preview
取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)

SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。
preview
FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引

FVGをマスターする:ブレーカーと市場構造の変化によるフォーメーション、ロジック、自動取引

これは、FVG(Fair Value Gaps、フェアバリューギャップ)の発生の形成ロジックや、ブレーカーおよびMSS(Market Structure Shifts、市場構造の変化)を用いた自動取引について解説することを目的として執筆した記事です。
preview
MetaTrader 5機械学習の設計図(第2回):機械学習のための金融データのラベリング

MetaTrader 5機械学習の設計図(第2回):機械学習のための金融データのラベリング

本連載「機械学習の設計図」の第2回では、単純なラベル付けがなぜモデルを誤った方向に導いてしまうのか、そしてトリプルバリア法やトレンドスキャン法といった高度な手法をどのように適用すれば、リスクを考慮した堅牢なターゲットを定義できるのかをご紹介します。計算負荷の高いこれらの手法を最適化する実践的なPythonコード例も多数取り上げ、市場のノイズに満ちたデータを、現実の取引環境に即した信頼性の高いラベルへと変換する方法を詳しく解説します。
preview
プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

プライスアクション分析ツールキットの開発(第37回):Sentiment Tilt Meter

市場センチメントは、価格変動に影響を与える要因の中でも最も見落とされがちでありながら強力な要因のひとつです。多くのトレーダーが遅行指標や経験則に頼る中、Sentiment Tilt Meter (STM) EAは生の市場データを明確で視覚的なガイダンスへと変換し、市場が強気、弱気、中立のどちらへ傾いているのかをリアルタイムで示します。これにより、エントリーの根拠を確認し、ダマシを回避し、市場参加のタイミングをより適切に図りやすくなります。
preview
データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測

データサイエンスとML(第46回):PythonでN-BEATSを使った株式市場予測

N-BEATSは、時系列予測のために設計された革新的なディープラーニングモデルです。このモデルは、ARIMAやPROPHET、VARなどの従来の時系列予測モデルを超えることを目指して公開されました。本記事では、このモデルについて説明し、株式市場の予測にどのように活用できるかを紹介します。
preview
知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

知っておくべきMQL5ウィザードのテクニック(第71回):MACDとOBVのパターンの使用

移動平均収束拡散法(MACD)オシレーターとオンバランスボリューム(OBV)オシレーターは、MQL5のエキスパートアドバイザー(EA)内で併用できるもう一つの指標ペアです。本連載における慣例どおり、この組み合わせも補完関係にあり、MACDがトレンドを確認し、OBVが出来高を検証します。MQL5ウィザードを用いて、この2つが持つ潜在力を構築、検証します。
preview
取引システムの構築(第4回):ランダム決済が取引の期待値に与える影響

取引システムの構築(第4回):ランダム決済が取引の期待値に与える影響

多くのトレーダーは、エントリーの基準には忠実であっても、取引管理で苦労する状況を経験しています。正しいセットアップであっても、取引がテイクプロフィット(利確)やストップロス(損切り)の水準に達する前にパニックで決済してしまうといった感情的な判断は、資産曲線を下向きにする原因となります。では、トレーダーはこの問題をどう克服し、結果を改善できるのでしょうか。本記事では、ランダムな勝率を用いてこの問題を検証し、モンテカルロシミュレーションを通じて、トレーダーがオリジナルの目標に到達する前に合理的な水準で利益を確定することで戦略を洗練させる方法を示します。
preview
初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

初心者からエキスパートへ:MQL5を使用したアニメーションニュースヘッドライン(VII) - ニュース取引におけるポストインパクト戦略

高インパクトの経済ニュースが発表された直後の1分間は、ウィップソー(騙しの多い相場)リスクが非常に高い時間帯です。この短い瞬間、価格変動は不規則で、かつ極めてボラティリティが高く、両方向のペンディング注文が立て続けに発動されることも少なくありません。しかし、通常は1分以内には市場が次第に安定し、従来のトレンドへと戻ったり、修正の動きを見せたりしながら、より通常に近いボラティリティ水準に落ち着いていきます。このセクションでは、ニュース取引における代替アプローチを検討し、その有効性を検証し、トレーダーの戦略ツールキットにどのように加えられるかを探っていきます。詳細と洞察は、以下の項目で順を追って解説します。
preview
MQL5での取引戦略の自動化(第36回):リテストとインパルスモデルによる需給取引

MQL5での取引戦略の自動化(第36回):リテストとインパルスモデルによる需給取引

本記事では、MQL5を用いて、需給(S&D: Supply and Demand)取引システムを構築します。本システムは、レンジ相場による需給ゾーンの特定、インパルスムーブによるゾーンの検証、そしてトレンド確認を伴うリテストでのエントリーをおこないます。さらに、カスタマイズ可能なリスク管理パラメータやトレーリングストップをサポートし、動的なラベルやカラー表示によるゾーンの可視化も実装しています。
preview
取引におけるニューラルネットワーク:階層型ダブルタワーTransformer (Hidformer)

取引におけるニューラルネットワーク:階層型ダブルタワーTransformer (Hidformer)

階層型ダブルタワーTransformer (Hidformer: Hierarchical Double-Tower Transformer)フレームワークについて紹介します。このフレームワークは時系列予測およびデータ分析向けに開発されました。Hidformerの開発者は、Transformerアーキテクチャに対して複数の改良を提案しており、その結果、予測精度の向上と計算リソースの削減を実現しています。
preview
古典的な戦略を再構築する(第14回):複数戦略分析

古典的な戦略を再構築する(第14回):複数戦略分析

本記事では、取引戦略のアンサンブル構築と、MT5遺伝的最適化を用いた戦略パラメータの調整について、引き続き検討していきます。本日はPythonでデータを分析し、モデルがどの戦略が優れているかをより正確に予測でき、市場リターンを直接予測するよりも高い精度を達成できることを示しました。しかし、統計モデルを用いてアプリケーションをテストしたところ、パフォーマンスは著しく低下しました。その後、遺伝的最適化が相関性の高い戦略を優先していたことが判明し、私たちは投票の重みを固定し、インジケーター設定の最適化に焦点を当てるよう方法を修正しました。
preview
MQL5で自己最適化エキスパートアドバイザーを構築する(第13回):行列分解を用いた制御理論の簡単な入門

MQL5で自己最適化エキスパートアドバイザーを構築する(第13回):行列分解を用いた制御理論の簡単な入門

金融市場は本質的に予測が難しく、過去には利益が出ていたように見える取引戦略でも、実際の市場環境では破綻することが少なくありません。主な原因は、ほとんどの戦略が一度展開されると振る舞いが固定され、失敗から学習したり適応したりできないということです。そこで制御理論の考え方を取り入れることで、フィードバックコントローラを用いて戦略と市場の相互作用を観察し、その挙動を収益性に向けて調整することが可能になります。今回の結果では、単純な移動平均戦略にフィードバックコントローラを導入するだけで、利益の向上、リスクの低減、効率の改善が見られ、このアプローチが取引用途において大きな可能性を持つことが示されました。
preview
量子コンピューティングと取引:価格予測への新たなアプローチ

量子コンピューティングと取引:価格予測への新たなアプローチ

本記事では、量子コンピューティングを用いて金融市場における価格変動を予測するための革新的なアプローチについて説明します。主な焦点は、量子位相推定(QPE: Quantum Phase Estimation)アルゴリズムを適用して価格パターンのプロトタイプを見つけることであり、これによりトレーダーは市場データの分析を大幅に高速化できるようになります。
preview
知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

知っておくべきMQL5ウィザードのテクニック(第63回):DeMarkerとEnvelope Channelsのパターンを活用する

DeMarkerオシレーターとEnvelopesインジケーターは、エキスパートアドバイザー(EA)を開発するときに組み合わせることができるモメンタムおよびサポート/レジスタンスツールです。パターンごとに何が役に立つのか、そして何を避けることができるのかを調べます。いつものように、ウィザードで組み立てられたEAと、エキスパートシグナルクラスに組み込まれているパターン使用関数を使用しています。
preview
取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

取引におけるニューラルネットワーク:予測符号化を備えたハイブリッド取引フレームワーク(StockFormer)

本記事では、予測符号化と強化学習(RL)アルゴリズムを組み合わせたハイブリッド取引システム「StockFormer」について解説します。本フレームワークは、統合型のDiversified Multi-Head Attention (DMH-Attn)機構を備えた3つのTransformerブランチを使用しています。DMH-Attnは、従来のAttentionモジュールを改良したもので、マルチヘッドのFeed-Forwardブロックを組み込むことにより、異なるサブスペースにわたる多様な時系列パターンを捉えることが可能です。
preview
ビッグバンビッグクランチ(BBBC)アルゴリズム

ビッグバンビッグクランチ(BBBC)アルゴリズム

本記事では、ビッグバンビッグクランチ(BBBC)法について紹介します。本手法は2つの主要な段階から構成されます。すなわち、ランダムな点を周期的に生成する段階と、それらを最適解へ圧縮する段階です。本アプローチは探索と精緻化を組み合わせることで、段階的により良好な解を導出し、新たな最適化の可能性を開くことが可能です。
preview
MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

MQL5からDiscordへのメッセージの送信、Discord-MetaTrader 5ボットの作成

Telegramと同様に、Discordもその通信APIを使用してJSON形式の情報やメッセージを受信することができます。本記事では、MetaTrader5からDiscordの取引コミュニティに取引シグナルやアップデートを送信するためにDiscord APIをどのように利用できるかを探っていきます。
preview
プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

プライスアクション分析ツールキットの開発(第39回):MQL5でBOSとChoCHの検出を自動化する

本記事では、フラクタルピボットを実用的な市場構造シグナルへ変換する、コンパクトなMQL5システム「Fractal Reaction System」を紹介します。リペイントを回避するために確定バーのロジックを用い、EAはChoCH (Change-of-Character)警告を検出し、BOS (Break-of-Structure)を確定させ、永続的なチャートオブジェクトを描画し、すべての確定イベントをログ出力してアラート(デスクトップ、モバイル、サウンド)します。アルゴリズム設計、実装上の注意点、テスト結果、そしてEAコード全文を順に解説し、読者ご自身でコンパイル、テスト、展開できるようにします。
preview
MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

MQL5経済指標カレンダーを使った取引(第10回):シームレスなニュースナビゲーションのためのドラッグ可能ダッシュボードとインタラクティブホバー効果

本記事では、MQL5経済カレンダーを強化し、ドラッグ可能なダッシュボードを導入してインターフェースの位置を自由に変更できるようにし、チャートの視認性を高めます。また、ボタンのホバー効果を実装して操作性を高め、動的に変化するスクロールバーによってスムーズなナビゲーションを実現します。
preview
リスク管理(第2回):グラフィカルインターフェースでのロット計算の実装

リスク管理(第2回):グラフィカルインターフェースでのロット計算の実装

本記事では、前回の記事で紹介した内容をさらに発展させ、MQL5の強力なグラフィカルコントロールライブラリを使って実際にGUIを作成する方法を解説します。ステップごとに、完全に動作するGUIを作る過程を追いながら、各メソッドの仕組みや役割、そしてその背後にある考え方についても丁寧に説明します。また、記事の最後には、作成したパネルをテストして、正しく機能することを確認します。
preview
MQL5での取引戦略の自動化(第32回):プライスアクションに基づくファイブドライブハーモニックパターンシステムの作成

MQL5での取引戦略の自動化(第32回):プライスアクションに基づくファイブドライブハーモニックパターンシステムの作成

本記事では、MQL5においてピボットポイントとフィボナッチ比率に基づいて強気、弱気双方のファイブドライブ(5-0)ハーモニックパターンを識別し、ユーザーが選択できるカスタムエントリー、ストップロス、テイクプロフィット設定を用いて取引を実行するファイブドライブパターンシステムを開発します。また、A-B-C-D-E-Fパターン構造やエントリーレベルを表示するために、三角形やトレンドラインなどのチャートオブジェクトを使った視覚的フィードバックでトレーダーの洞察力を高めます。
preview
取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

取引におけるニューラルネットワーク:マルチエージェント自己適応モデル(MASA)

マルチエージェント自己適応(MASA: Multi-Agent Self-Adaptive)フレームワークについて紹介します。本フレームワークは、強化学習と適応戦略を組み合わせ、変動の激しい市場環境においても収益性とリスク管理のバランスを実現します。
preview
循環単為生殖アルゴリズム(CPA)

循環単為生殖アルゴリズム(CPA)

本記事では、新しい集団最適化アルゴリズムである循環単為生殖アルゴリズム(CPA: Cyclic Parthenogenesis Algorithm)を取り上げます。本アルゴリズムは、アブラムシ特有の繁殖戦略に着想を得ています。CPAは、単為生殖と有性生殖という2つの繁殖メカニズムを組み合わせるほか、個体群のコロニー構造を活用し、コロニー間の移動も可能にしています。このアルゴリズムの主要な特徴は、異なる繁殖戦略間の適応的な切り替えと、飛行メカニズムを通じたコロニー間の情報交換システムです。