MQL5プログラミング記事

icon

取引戦略をプログラミングするためのMQL5言語を、ほとんどがコミュニティメンバーによって書かれた数多くの公開記事で学びます。記事は統合、テスター、取引戦略等のカテゴリに分けられていて、プログラミングに関連する疑問への解答を素早く見つけることができます。

新着記事をフォローして、フォーラムでディスカッションしてください。

新しい記事を追加
最新 | ベスト
preview
血液型遺伝最適化(BIO)

血液型遺伝最適化(BIO)

人間の血液型の遺伝システムに着想を得た、新しい集団最適化アルゴリズム「血液型遺伝最適化(BIO)」を紹介します。このアルゴリズムでは、各解がそれぞれ固有の「血液型」を持ち、その血液型が進化の方法を決定します。自然界において子の血液型が特定の遺伝ルールに従って受け継がれるように、BIOでは新しい解が継承と突然変異の仕組みを通じて特性を獲得します。
preview
PythonでリモートFXリスク管理システムを構築する

PythonでリモートFXリスク管理システムを構築する

Pythonで動作するリモートの外国為替リスク管理システムを構築しており、サーバーにも段階的に展開しています。本記事を通して、プログラムでFXのリスクを管理する方法や、FXの資金を無駄にしない方法を学んでいきます。
preview
円探索アルゴリズム(CSA)

円探索アルゴリズム(CSA)

本記事では、円の幾何学的性質に基づいた新しいメタヒューリスティック最適化アルゴリズム「円探索アルゴリズム(Circle Search Algorithm, CSA)」を紹介します。本アルゴリズムは、最適解を探索するために点を接線に沿って移動させる原理を使用し、大域探索と局所探索のフェーズを組み合わせています。
preview
取引におけるニューラルネットワーク:2次元接続空間モデル(Chimera)

取引におけるニューラルネットワーク:2次元接続空間モデル(Chimera)

この記事では、革新的なChimeraフレームワークについて解説します。Chimeraは二次元状態空間モデルを用い、ニューラルネットワークで多変量時系列を解析する手法です。この方法は、従来手法やTransformerアーキテクチャを上回る低い計算コストで高い精度を実現します実現します。
preview
MQL5取引ツール(第9回):EA向けスクロール可能ガイド付き初回実行ユーザー設定ウィザードの開発

MQL5取引ツール(第9回):EA向けスクロール可能ガイド付き初回実行ユーザー設定ウィザードの開発

本記事では、エキスパートアドバイザー(EA)向けのMQL5初回実行ユーザー設定ウィザードを開発します。このウィザードはスクロール可能なガイド、インタラクティブなダッシュボード、動的テキストフォーマット、ボタンやチェックボックスなどの視覚的コントロールを備えており、ユーザーが指示に沿って操作し、取引パラメータを効率的に設定できるようにします。ユーザーは、初回実行時にプログラムの内容と操作方法を把握でき、オリエンテーションモデルとして利用できます。
preview
共和分株式による統計的裁定取引(第6回):スコアリングシステム

共和分株式による統計的裁定取引(第6回):スコアリングシステム

本記事では、共和分株式の統計的裁定取引に基づく平均回帰戦略のスコアリングシステムを提案します。流動性や取引コストから、共和分ベクトルの数(ランク)や回帰までの時間に至るまでの基準を示しつつ、時間足やルックバック期間のような戦略的基準も考慮し、スコアランキングを正しく評価する前に検討しています。バックテストの再現に必要なファイルも提供され、その結果についてもコメントしています。
preview
初級から中級まで:構造体(I)

初級から中級まで:構造体(I)

本日は、構造体について、よりシンプルで実践的、かつ無理のない形で学び始めます。構造体は、構造化プログラミングであろうとなかろうと、プログラミングの基礎を成す要素のひとつです。多くの人は、構造体を単なるデータの集合だと考えがちですが、実際にはそれ以上の役割を持っています。本記事では、この新しい世界を、できるだけ分かりやすく、体系的に探っていきます。
preview
ビリヤード最適化アルゴリズム(BOA)

ビリヤード最適化アルゴリズム(BOA)

BOA法は、古典的なビリヤードに着想を得ており、最適解を探すプロセスを、玉が穴に落ちることで最良の結果を表すゲームとしてシミュレーションします。本記事では、BOAの基本、数学モデル、およびさまざまな最適化問題を解く際の効率について考察します。
preview
多通貨エキスパートアドバイザーの開発(第21回):重要な実験の準備とコードの最適化

多通貨エキスパートアドバイザーの開発(第21回):重要な実験の準備とコードの最適化

さらなる前進のためには、自動最適化を定期的に再実行し、新しいエキスパートアドバイザー(EA)を生成することで結果を改善できるかどうかを検証することが有益でしょう。パラメータ最適化の利用を巡る多くの議論における最大の障害は、取得したパラメータを将来の期間において、収益性およびドローダウンを所定の水準に保ったまま、どれだけ長く取引に使用できるのかという点です。そして、そもそもそれは可能なのかという問題でもあります。
preview
多通貨エキスパートアドバイザーの開発(第22回):設定のホットスワップへの移行を開始する

多通貨エキスパートアドバイザーの開発(第22回):設定のホットスワップへの移行を開始する

定期的な最適化を自動化するのであれば、取引口座上ですでに稼働しているEAの設定を自動更新することについても検討する必要があります。これにより、ストラテジーテスター内でエキスパートアドバイザー(EA)を実行しながら、単一の実行の中でその設定を変更できるようにする必要があります。
preview
1世紀前の機能で取引戦略をアップデートする

1世紀前の機能で取引戦略をアップデートする

本記事では、ラーデマッヘル関数およびウォルシュ関数を取り上げます。これらの関数を金融時系列解析にどのように適用できるかを検討し、さらに取引におけるさまざまな応用例についても考察します。
preview
初級から中級まで:構造体(II)

初級から中級まで:構造体(II)

本記事では、MQL5のようなプログラミング言語において構造体が存在する理由を考察します。また、構造体を用いて関数や手続き間で値を受け渡すことが有効な場合と、必ずしもそうではない場合がある理由についても解説します。
preview
取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

取引におけるニューラルネットワーク:2次元接続空間モデル(最終回)

革新的なChimeraフレームワークの探求を続けます。このフレームワークは、ニューラルネットワーク技術を用いて多次元時系列を解析する二次元状態空間モデル(2D-SSM)です。この手法は、高い予測精度と低い計算コストを両立します。
preview
初心者からエキスパートへ:FX市場の取引期間

初心者からエキスパートへ:FX市場の取引期間

すべての市場の取引期間には始まりと終わりがあり、それぞれは終値によって完結します。この終値がその期間のセンチメントを定義します。各ローソク足のセッションも同様に、終値によってその性質が示されます。これらの基準点を理解することで、市場における現在のムードを測定でき、強気勢力と弱気勢力のどちらが支配しているのかを明らかにすることが可能になります。本記事では、Market Periods Synchronizerに新しい機能を開発するという重要な段階に進みます。この機能は、FX市場のセッションを可視化するものであり、より情報に基づいた取引判断を支援します。このツールは、強気派と弱気派のどちらがセッションを支配しているのかをリアルタイムで識別するうえで特に有効です。それでは、この概念について検討し、それが提供する洞察を明らかにしていきます。
preview
初級から中級まで:イベント(I)

初級から中級まで:イベント(I)

ここまでに示された内容を踏まえると、いよいよチャート上で直接銘柄を操作するようなアプリケーションの実装を始めることができそうです。しかし、その前に、初心者にはやや混乱しやすい概念について触れておく必要があります。つまり、チャート上で表示することを目的として開発されるMQL5のアプリケーションは、これまで見てきた方法と同じようには作られないということです。本記事では、この点を少しずつ理解していきます。
preview
取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(FinCon)

取引におけるニューラルネットワーク:概念強化を備えたマルチエージェントシステム(FinCon)

FinConフレームワークは、大規模言語モデル(LLM)をベースにしたマルチエージェントシステムです。概念的言語強化を活用して意思決定とリスク管理を改善し、さまざまな金融タスクで効果的に機能するよう設計されています。
preview
取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(最終回)

取引におけるニューラルネットワーク:暗号通貨市場向けメモリ拡張コンテキスト認識学習(最終回)

MacroHFTフレームワークは、高頻度暗号資産取引(HFT)のために、文脈認識型強化学習とメモリ機構を用いて動的な市場環境に適応します。本記事の最後では、実装した手法を実際の過去データで検証し、その有効性を評価します。
preview
取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習(最終回)

取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習(最終回)

ResNeXtに基づくマルチタスク学習フレームワークの探求を続けます。このフレームワークは、モジュール性が高く、計算効率に優れ、データ中の安定したパターンを特定できることが特徴です。単一のエンコーダーと専門化された「ヘッド」を使用することで、モデルの過学習のリスクを減らし、予測の精度を向上させます。
preview
市場シミュレーション(第5回):C_Ordersクラスの作成(II)

市場シミュレーション(第5回):C_Ordersクラスの作成(II)

本記事では、Chart Tradeとエキスパートアドバイザー(EA)が連携して、ユーザーが保有しているすべてのポジションを決済する要求をどのように処理するのかを解説します。一見すると単純な処理に思えるかもしれませんが、実際には注意すべきいくつかの複雑な点があります。
preview
多通貨エキスパートアドバイザーの開発(第23回):自動プロジェクト最適化段階のコンベアの配置(II)

多通貨エキスパートアドバイザーの開発(第23回):自動プロジェクト最適化段階のコンベアの配置(II)

1つの最終EAで使用される取引戦略を自動的かつ定期的に最適化するためのシステムの構築を目指します。システムは進化するにつれてますます複雑になるため、時折全体を俯瞰し、ボトルネックや非効率な解決策を特定する必要があります。
preview
MQL標準ライブラリエクスプローラー(第2回):ライブラリコンポーネントの接続

MQL標準ライブラリエクスプローラー(第2回):ライブラリコンポーネントの接続

本記事では、MQL5標準ライブラリを用いてエキスパートアドバイザー(EA)を効率的に構築するために、クラス構造をどのように読み解くべきかを整理します。標準ライブラリは高い拡張性と機能性を備えていますが、その全体像が見えにくく、体系的な指針がないまま複雑なツールキットを渡されたように感じることも少なくありません。そこで本記事では、実際の開発現場でクラスを確実に連携させるための、簡潔かつ再現性の高い統合手順を紹介します。
preview
市場シミュレーション(第8回):ソケット(II)

市場シミュレーション(第8回):ソケット(II)

ソケットを使って何か実用的なものを作ってみましょう。今回の記事では、ミニチャットの作成を始めます。一緒にどのようにおこなうかを見ていきましょう。とても面白い内容になるでしょう。ここで提供するコードは教育目的のみの使用を想定しています。商用目的や既製のアプリケーションでの使用には適していません。ソケット上で送信されるデータは安全に保護されず、内容が第三者からアクセス可能になる可能性があるためです。
preview
取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習

取引におけるニューラルネットワーク:ResNeXtモデルに基づくマルチタスク学習

ResNeXtに基づくマルチタスク学習フレームワークは、金融データの高次元性、非線形性、時間依存性を考慮しながら分析を最適化します。グループ畳み込みと専用ヘッドの使用により、モデルは入力データから重要な特徴を効果的に抽出することができます。
preview
取引におけるニューラルネットワーク:階層型ダブルタワーTransformer(最終回)

取引におけるニューラルネットワーク:階層型ダブルタワーTransformer(最終回)

複雑な多変量時系列の分析および予測を目的に設計された、Hidformer階層型ダブルタワーTransformerモデルの構築を引き続き進めます。本記事では、これまでに着手した作業を論理的な結論へと導き、実際の履歴データを用いてモデルを検証します。
preview
初級から中級まで:テンプレートとtypename(V)

初級から中級まで:テンプレートとtypename(V)

本記事では、テンプレートの最後の簡単な使用例を探り、コード内でtypenameを使用する利点と必要性についても解説します。最初は少し難しく感じるかもしれませんが、テンプレートやtypenameを後で正しく使うためには、しっかり理解しておくことが重要です。
preview
取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(最終部)

取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(最終部)

マルチモーダル市場の動向データと過去の取引パターンを分析するために設計されたマルチモーダル金融取引エージェント「FinAgent」のアルゴリズム開発を続けます。
preview
多通貨エキスパートアドバイザーの開発(第24回):新しい戦略の追加(I)

多通貨エキスパートアドバイザーの開発(第24回):新しい戦略の追加(I)

本記事では、作成済みの自動最適化システムに新しい戦略を連携する方法を見ていきます。どのようなEAを作成する必要があるのか、EAライブラリのファイルを変更せずにできるのか、必要な変更を最小限に抑えられるかを確認してみましょう。
preview
取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(FinAgent)

取引におけるニューラルネットワーク:金融市場向けマルチモーダルツール拡張エージェント(FinAgent)

FinAgentを紹介します。FinAgentは、マーケットの動向や過去の取引パターンを反映するさまざまなタイプのデータを分析できるマルチモーダル金融取引エージェントのフレームワークです。
preview
MQL5入門(第26回):MQL5のAPIとWebRequest関数の習得

MQL5入門(第26回):MQL5のAPIとWebRequest関数の習得

本記事では、MQL5におけるWebRequest関数とAPIの使用方法を紹介し、外部プラットフォームと通信する方法を解説します。MetaTrader 5から直接Telegramボットを作成し、チャットやグループのIDを取得し、メッセージの送信、編集、削除をおこなう方法を学びます。これにより、今後のMQL5プロジェクトでのAPI統合の基礎をしっかり身につけることができます。
preview
MQL5でのテーブルモデルの実装:MVC概念の適用

MQL5でのテーブルモデルの実装:MVC概念の適用

本記事では、MQL5におけるテーブルモデルの開発過程を、MVC (Model-View-Controller)アーキテクチャパターンを用いて解説します。データロジック、表示、制御を分離することで、構造化され柔軟かつ拡張可能なコードを実現します。テーブルモデルを構築するためのクラス設計や、データ格納のためのリンクリストの使用方法も取り上げます。
preview
市場シミュレーション(第4回):C_Ordersクラスの作成(I)

市場シミュレーション(第4回):C_Ordersクラスの作成(I)

本記事では、取引サーバーに注文を送信できるようにするためのC_Ordersクラスの作成を開始します。これは少しずつ進めていきますが、目的は、メッセージングシステムを通じてこれがどのようにおこなわれるのかを詳細に説明することです。
preview
取引における資金管理とデータベースを用いた個人向け会計プログラム

取引における資金管理とデータベースを用いた個人向け会計プログラム

トレーダーはどのように資金を管理すればよいのでしょうか。また、トレーダーや投資家はどのようにして支出、収入、資産、負債を把握すればよいのでしょうか。本記事では、単なる会計ソフトではなく、金融市場という荒波の中で意思決定を支える実践的なツールを紹介します。
preview
ニューロボイド最適化アルゴリズム(NOA)

ニューロボイド最適化アルゴリズム(NOA)

新しい生体模倣型最適化メタヒューリスティックであるNOA (Neuroboids Optimization Algorithm)は、集合知とニューラルネットワークの原理を組み合わせた手法です。従来の方法とは異なり、このアルゴリズムは自己学習型の「ニューロボイド」集団を使用し、それぞれが独自のニューラルネットワークを持ち、探索戦略をリアルタイムで適応させます。本記事では、アルゴリズムのアーキテクチャ、エージェントの自己学習メカニズム、そしてこのハイブリッドアプローチを複雑な最適化問題に応用する可能性について解説します。
preview
カオスゲーム最適化(CGO)

カオスゲーム最適化(CGO)

本記事では、新しいメタヒューリスティックアルゴリズムであるカオスゲーム最適化(CGO)を紹介します。CGOは、高次元問題に対しても高い効率を維持できるという独自の特性を示しています。ほとんどの最適化アルゴリズムとは異なり、CGOは問題の規模が大きくなると性能が低下するどころか、場合によっては向上することさえあり、これがこのアルゴリズムの主要な特徴です。
preview
レストラン経営達人アルゴリズム(SRA)

レストラン経営達人アルゴリズム(SRA)

レストラン経営達人アルゴリズム(SRA)は、レストラン経営の原則に着想を得た革新的な最適化手法です。従来のアプローチとは異なり、SRAは弱い解を破棄するのではなく、成功した解の要素と組み合わせて改善します。このアルゴリズムは競争力のある結果を示し、最適化問題における探索と活用のバランスに関する新しい視点を提供します。
preview
FX裁定取引:合成通貨の動きとその平均回帰の分析

FX裁定取引:合成通貨の動きとその平均回帰の分析

本記事では、PythonおよびMQL5を用いて合成通貨の動きを分析し、現在のFX裁定取引の実現可能性について検討します。また、合成通貨を分析するための既製Pythonコードを紹介するとともに、FXにおける合成通貨の概念についても詳しく解説します。
preview
MQL5 MVCパラダイムのテーブルのビューコンポーネント:シンプルな操作

MQL5 MVCパラダイムのテーブルのビューコンポーネント:シンプルな操作

本記事では、MVC (Model-View-Controller)パラダイムにおけるテーブル実装で、より複雑なグラフィック要素を構成するビューコンポーネントとしてのシンプルなコントロールについて解説します。ユーザーや他の要素との相互作用のための基本的な機能はコントローラーに実装されています。本記事はビューコンポーネントに関する第2回目の記事であり、MetaTrader 5クライアントターミナル向けテーブル作成に関する連載の第4回目です。
preview
MQL5のテーブルモデルに基づくテーブルクラスとヘッダクラス:MVC概念の適用

MQL5のテーブルモデルに基づくテーブルクラスとヘッダクラス:MVC概念の適用

これは、MQL5でのテーブルモデル実装をMVC (Model-View-Controller)アーキテクチャパラダイムに基づいて解説する記事の第2部です。本記事では、前回作成したテーブルモデルをもとに、テーブルクラスおよびテーブルヘッダの開発について説明します。開発したクラスは、次回の記事で扱うビューおよびコントローラーコンポーネントの実装の基礎となります。
preview
初心者からエキスパートへ:時間フィルタ付き取引

初心者からエキスパートへ:時間フィルタ付き取引

ティックが常に流入しているからといって、すべての瞬間が取引チャンスであるわけではありません。本記事では「タイミングの技術」に焦点を当て、トレーダーが最も有利な市場時間帯を特定し、その中で取引をおこなうための時間分離アルゴリズムの構築について詳しく検討します。この規律を身につけることで、個人トレーダーは機関投資家のタイミングとより密接に同期できるようになり、成功を左右することの多い正確さと忍耐力を発揮できるようになります。MQL5の分析機能を通じて、タイミングと選択的取引の科学を探求しましょう。
preview
MQL5入門(第26回):サポートおよびレジスタンスゾーンを使ったEAの構築

MQL5入門(第26回):サポートおよびレジスタンスゾーンを使ったEAの構築

本記事では、サポートおよびレジスタンスゾーンを自動的に検出し、それに基づいて取引を実行するMQL5エキスパートアドバイザー(EA)の作成方法を学びます。EAにこれらの重要な価格レベルを認識させ、価格の反応を監視し、手動操作なしで取引判断をおこなう方法を理解することができます。