
リプレイシステムの開発(第72回):異例のコミュニケーション(I)
私たちが本日作成する内容は、理解が難しいものになるでしょう。したがって本稿では、初期段階についてのみ説明します。この段階は次のステップに進むための重要な前提条件となるため、ぜひ注意深く読んでください。この資料の目的はあくまで学習にあります。提示された概念を実際に応用するのではなく、あくまで理解・習得することが目的です。

取引におけるニューラルネットワーク:NAFSによるノード依存型グラフ表現
NAFS (Node-Adaptive Feature Smoothing)手法を紹介します。これは、パラメータの学習を必要としない非パラメトリックなノード表現生成手法です。NAFSは、各ノードの近傍ノードに基づいて特徴量を抽出し、それらを適応的に統合することで最終的なノード表現を生成します。

株式市場における非線形回帰モデル
株式市場における非線形回帰モデル:金融市場は予測できるのかEURUSDの価格を予測するモデルを作成し、それに基づいて2つのロボット(Python版とMQL5版)を作ることを考えてみましょう。

算術最適化アルゴリズム(AOA):AOAからSOA(シンプル最適化アルゴリズム)へ
本稿では、加算、減算、乗算、除算といった単純な算術演算に基づく算術最適化アルゴリズム(AOA: Arithmetic Optimization Algorithm)を紹介します。これらの基本的な数学的操作が、さまざまな問題の最適解を見つけるための基盤となります。

取引におけるニューラルネットワーク:シャープネス低減によるTransformerの効率向上(最終回)
SAMformerは、長期の時系列予測におけるTransformerモデルの主要な欠点、すなわち学習の複雑さや小規模データセットでの汎化性能の低さに対して解決策を提供します。その浅いアーキテクチャとシャープネス認識型最適化により、不適切な局所解に陥ることを防ぎます。本記事では、MQL5を用いたアプローチの実装を続け、実際的な価値を評価していきます。

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer(最終回)
前回の記事では、PSformerフレームワークの理論的側面について議論しました。このフレームワークは、従来のTransformerアーキテクチャに、パラメータ共有(PS)メカニズムと時空間Segment Attention (SegAtt)という2つの主要な革新をもたらします。本稿では、前回に引き続き、提案された手法をMQL5を用いて実装する作業について説明します。

取引におけるニューラルネットワーク:Segment Attentionを備えたパラメータ効率重視Transformer (PSformer)
この記事では、新しいPSformerフレームワークを紹介します。これは、従来のTransformerアーキテクチャを多変量時系列予測の問題に適応させたものです。本フレームワークは、パラメータ共有(PS)機構とSegment Attention機構(SegAtt)の2つの主要な革新に基づいています。

マーケットプロファイルインジケーター
この記事では、マーケットプロファイルインジケーターについて考察します。この名前の背後に何があるのかを探り、その動作原理を理解し、さらに端末版(MarketProfile)も見ていきます。

リプレイシステムの開発(第76回):新しいChart Trade(III)
この記事では、前回の記事で省略されていたDispatchMessageのコードがどのように動作するのかを見ていきます。さらに、次回の記事のテーマについても紹介します。そのため、次のトピックに進む前に、このコードの仕組みを理解しておくことが重要です。ここで提示されるコンテンツは、教育目的のみに使用されることを意図しています。いかなる状況においても、提示された概念を学習し習得する以外の目的でアプリケーションを利用することは避けてください。

初級から中級まで:定義(I)
この記事では、多くの人が奇妙でまったく脈絡がないと感じるであろうことを扱います。しかし、それらを正しく活用すれば、学習はより楽しく、さらに興味深いものになるでしょう。ここで示す内容を基に、かなり面白いものを構築することも可能です。これにより、MQL5言語の構文をより深く理解できるようになるでしょう。なお、本記事の内容は教育目的に限定されており、完成されたアプリケーションとして捉えるべきではありません。ここでの目的は、提示された概念そのものを応用することではありません。

時間、価格、ボリュームに基づいた3Dバーの作成
この記事では、多変量3D価格チャートとその作成方法について詳しく説明します。また、3Dバーが価格反転をどのように予測するか、PythonとMetaTrader 5を使ってリアルタイムでこれらのボリュームバーをプロットする方法についても考察します。