Creación de barras 3D basadas en el tiempo, el precio y el volumen
Qué son los gráficos de precios multidimensionales en 3D y cómo se crean. Cómo las barras 3D predicen las inversiones de precios, y cómo Python y MetaTrader 5 permiten construir estas barras volumétricas en tiempo real.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 03): Haciendo ajustes (I)
Pongamos las cosas en su sitio, porque este comienzo no ha sido de los mejores. Si no lo hacemos ahora, pronto tendremos problemas.
Desarrollo de un sistema de repetición (Parte 35): Haciendo retoques (I)
Tenemos que arreglar algunas cosas antes de poder continuar de verdad. Pero no es necesariamente una corrección, sino una mejora en la forma de gestionar y utilizar la clase. La razón es que hay fallos debidos a algún tipo de interacción dentro del sistema. A pesar de los intentos de comprender la razón de algunos de los fallos, para ponerles fin, todos ellos se vieron frustrados, ya que algunos no tenían sentido. Cuando usamos punteros o recursión en C / C++, y el programa empieza a fallar.
Aplicamos el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza en MQL5
En este artículo, discutiremos cómo utilizar el coeficiente generalizado de Hurst y la prueba del coeficiente de varianza para analizar el comportamiento de las series de precios en MQL5.
Un algoritmo de selección de características que utiliza aprendizaje basado en energía en MQL5 puro
En este artículo presentamos la implementación de un algoritmo de selección de características descrito en un artículo académico titulado "FREL: Un algoritmo de selección de características estable", llamado Ponderación de características como aprendizaje regularizado basado en energía.
Algoritmo de búsqueda por vecindad — Across Neighbourhood Search (ANS)
El artículo revela el potencial del algoritmo ANS como paso importante en el desarrollo de métodos de optimización flexibles e inteligentes capaces de considerar la especificidad del problema y la dinámica del entorno en el espacio de búsqueda.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 25): Preparación para la próxima etapa
En este artículo, concluimos la primera fase del desarrollo del sistema de repetición y simulador. Con este hito, afirmo, estimado lector, que el sistema ha alcanzado un nivel avanzado, abriendo camino para la incorporación de nuevas funcionalidades. El objetivo es enriquecer aún más el sistema, convirtiéndolo en una herramienta poderosa para estudios y para el desarrollo de análisis de mercado.
Características del Wizard MQL5 que debe conocer (Parte 34): Incorporación de precios con un RBM no convencional
Las Máquinas de Boltzmann Restringidas (Restricted Boltzmann Machines, RBMs) son un tipo de red neuronal desarrollada a mediados de la década de 1980, en una época en la que los recursos computacionales eran extremadamente costosos.. Desde sus inicios, se basó en el muestreo de Gibbs y la divergencia contrastiva para reducir la dimensionalidad o capturar las probabilidades y propiedades ocultas en los conjuntos de datos de entrenamiento. Analizamos cómo la retropropagación puede lograr un rendimiento similar cuando la RBM "incorpora" precios en un perceptrón multicapa para pronósticos.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 6): Recolector de señales de reversión a la media
Aunque algunos conceptos pueden parecer sencillos a primera vista, ponerlos en práctica puede resultar bastante complicado. En el siguiente artículo, le guiaremos a través de nuestro innovador enfoque para automatizar un Asesor Experto (Expert Advisor, EA) que analiza hábilmente el mercado utilizando una estrategia de reversión a la media. Acompáñenos mientras desentrañamos las complejidades de este apasionante proceso de automatización.
MQL5 Wizard techniques you should know (Part 49): Aprendizaje por refuerzo con optimización de políticas proximales
La optimización de políticas proximales es otro algoritmo del aprendizaje por refuerzo que actualiza la política, a menudo en forma de red, en pasos incrementales muy pequeños para garantizar la estabilidad del modelo. Examinamos cómo esto podría ser útil, tal y como hemos hecho en artículos anteriores, en un asesor experto creado mediante un asistente.
Características del Wizard MQL5 que debe conocer (Parte 29): Continuación sobre las tasas de aprendizaje con MLP
Concluimos nuestro análisis de la sensibilidad de la tasa de aprendizaje al rendimiento de los Asesores Expertos examinando principalmente las Tasas de Aprendizaje Adaptativo. Estas tasas de aprendizaje pretenden personalizarse para cada parámetro de una capa durante el proceso de entrenamiento, por lo que evaluamos los beneficios potenciales frente al peaje de rendimiento esperado.
Hibridación de algoritmos basados en poblaciones. Esquema secuencial y paralelo
En este artículo, nos sumergiremos en el mundo de la hibridación de algoritmos de optimización analizando tres tipos clave: la mezcla de estrategias y la hibridación secuencial y paralela. Asimismo, realizaremos una serie de experimentos combinando y probando los algoritmos de optimización correspondientes.
Algoritmo de colmena artificial — Artificial Bee Hive Algorithm (ABHA): Pruebas y resultados
En este artículo, continuaremos analizando el algoritmo de colmena artificial ABHA profundizando en la codificación y observando los métodos restantes. Recordemos que cada abeja en el modelo está representada como un agente individual cuyo comportamiento dependerá de información interna y externa, así como del estado motivacional. Probaremos el algoritmo con varias funciones y resumiremos los resultados presentándolos en una tabla de calificación.
Reconocimiento de patrones mediante deformación dinámica del tiempo (Dynamic Time Warping, DTW) en MQL5
En este artículo, analizamos el concepto de deformación dinámica del tiempo como medio para identificar patrones predictivos en series de tiempo financieras. Veremos cómo funciona y presentaremos su implementación en MQL5.
Codificación ordinal para variables nominales
En este artículo, analizamos y demostramos cómo convertir predictores nominales en formatos numéricos adecuados para algoritmos de aprendizaje automático, utilizando tanto Python como MQL5.
Características del Wizard MQL5 que debe conocer (Parte 44): Indicador técnico Average True Range (ATR)
El oscilador ATR es un indicador muy popular que actúa como proxy de volatilidad, especialmente en los mercados de divisas, donde los datos de volumen son escasos. Examinamos esto, basándonos en patrones, como hemos hecho con indicadores anteriores, y compartimos estrategias e informes de pruebas gracias a las clases y el ensamblaje de la biblioteca del asistente MQL5.
Integración de MQL5 con paquetes de procesamiento de datos (Parte 3): Visualización mejorada de datos
En este artículo, realizaremos una visualización de datos mejorada que va más allá de los gráficos básicos, incorporando características como interactividad, datos en capas y elementos dinámicos, lo que permite a los operadores explorar tendencias, patrones y correlaciones de manera más eficaz.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 5): Volatility Navigator EA
Determinar la dirección del mercado puede ser sencillo, pero saber cuándo entrar puede resultar complicado. Como parte de la serie titulada «Desarrollo de un kit de herramientas para el análisis de la acción del precio», me complace presentar otra herramienta que proporciona puntos de entrada, niveles de toma de ganancias y colocación de órdenes stop loss. Para lograrlo, hemos utilizado el lenguaje de programación MQL5. Profundicemos en cada paso de este artículo.
Desarrollo de un sistema de repetición (Parte 75): Un nuevo Chart Trade (II)
En este artículo explicaré gran parte de la clase C_ChartFloatingRAD. Esta es la encargada de hacer que Chart Trade funcione. Sin embargo, no terminaré la explicación aquí. La finalizaré en el próximo artículo, ya que el contenido de este es bastante denso y necesita ser comprendido a fondo. El contenido expuesto aquí tiene como único objetivo la enseñanza. En ningún caso debe considerarse como una aplicación cuya finalidad sea distinta a la enseñanza y el estudio de los conceptos mostrados.
Características del Wizard MQL5 que debe conocer (Parte 24): Medias móviles
Las medias móviles son un indicador muy común que la mayoría de los operadores utilizan y comprenden. Exploramos posibles casos de uso menos comunes dentro de los Asesores Expertos disponibles en el Asistente de MQL5.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 10): Sólo datos reales para la repetición
Aquí veremos cómo se pueden utilizar datos más fiables (ticks negociados) en el sistema de repetición, sin tener que preocuparnos necesariamente de si están ajustados o no.
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte IV): Optimización de la estrategia de cuadrícula simple (I)
En esta cuarta parte, revisamos los asesores expertos (EA) Simple Hedge y Simple Grid desarrollados anteriormente. Nuestro enfoque se centra en perfeccionar Simple Grid EA a través del análisis matemático y un enfoque de fuerza bruta, apuntando al uso óptimo de la estrategia. Este artículo profundiza en la optimización matemática de la estrategia, preparando el escenario para la futura exploración de la optimización basada en codificación en entregas posteriores.
Desarrollo de un sistema de repetición (Parte 51): Esto complica las cosas (III)
En este artículo comprenderás una de las cosas más complejas que existen en la programación MQL5: la forma correcta de obtener el ID del gráfico y por qué a veces los objetos no se trazan en él. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Características del Wizard MQL5 que debe conocer (Parte 31): Selección de la función de pérdida
La función de pérdida es la métrica clave de los algoritmos de aprendizaje automático que proporciona información al proceso de formación cuantificando el rendimiento de un conjunto determinado de parámetros en comparación con el objetivo previsto. Exploramos los distintos formatos de esta función en una clase de asistente personalizada MQL5.
Algoritmo de optimización de Escalera Real - Royal Flush Optimisation (RFO)
El algoritmo Royal Flush Optimization del autor ofrece una nueva perspectiva en la resolución de problemas de optimización sustituyendo la clásica codificación binaria de los algoritmos genéticos por un enfoque basado en sectores e inspirado en los principios del póquer. El RFO demuestra cómo la simplificación de los principios básicos puede dar lugar a un método de optimización eficaz y práctico. El artículo presenta un análisis detallado del algoritmo y los resultados de las pruebas.
El papel de la calidad del generador de números aleatorios en la eficiencia de los algoritmos de optimización
En este artículo, analizaremos el generador de números aleatorios Mersenne Twister y lo compararemos con el estándar en MQL5. También determinaremos la influencia de la calidad del generador de números aleatorios en los resultados de los algoritmos de optimización.
Optimización con el juego del caos — Game Optimization (CGO)
Hoy presentamos el nuevo algoritmo metaheurístico de Chaos Game Optimisation (CGO), que demuestra una capacidad única para mantener una alta eficiencia al trabajar con problemas de alta dimensionalidad. A diferencia de la mayoría de los algoritmos de optimización, el CGO no solo no pierde rendimiento, sino que a veces incluso lo aumenta cuando se escala el problema, lo cual supone su característica clave.
Algoritmo de optimización de reacciones químicas (CRO) (Parte I): Química de procesos en la optimización
En la primera parte de este artículo, nos sumergiremos en el mundo de las reacciones químicas y descubriremos un nuevo enfoque de la optimización. La optimización de reacciones químicas (Chemical Reaction Optimization, CRO) utiliza principios derivados de las leyes de la termodinámica para lograr resultados eficientes. Desvelaremos los secretos de la descomposición, la síntesis y otros procesos químicos que se convirtieron en la base de este innovador método.
Características del Wizard MQL5 que debe conocer (Parte 27): Medias móviles y el ángulo de ataque
El ángulo de ataque es una métrica citada a menudo cuya inclinación se entiende que está estrechamente relacionada con la fuerza de una tendencia predominante. Nos fijamos en cómo se utiliza y se entiende comúnmente y examinamos si hay cambios que podrían introducirse en la forma de medirlo en beneficio de un sistema comercial que lo ponga en uso.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 12): Flujo externo (III) TrendMap
El flujo del mercado está determinado por las fuerzas entre alcistas y bajistas. Hay niveles específicos que el mercado respeta debido a las fuerzas que actúan sobre ellos. Los niveles de Fibonacci y VWAP son especialmente poderosos a la hora de influir en el comportamiento del mercado. Acompáñame en este artículo mientras exploramos una estrategia basada en los niveles VWAP y Fibonacci para la generación de señales.
Desarrollo de un sistema de repetición (Parte 50): Esto complica las cosas (II)
Vamos resolver la cuestión del ID del gráfico, pero al mismo tiempo, vamos empezar a garantizar que el usuario pueda hacer uso de una plantilla personal, enfocada en analizar el activo que desea estudiar y simular. El contenido expuesto aquí tiene como objetivo, pura y simplemente, ser didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Aprendizaje automático y Data Science (Parte 25): Predicción de series temporales de divisas mediante una red neuronal recurrente (RNN)
Las redes neuronales recurrentes (RNNs, Recurrent Neural Networks) destacan por aprovechar la información del pasado para predecir acontecimientos futuros. Sus notables capacidades predictivas se han aplicado en diversos ámbitos con gran éxito. En este artículo, utilizaremos modelos RNN para predecir tendencias en el mercado de divisas, demostrando su potencial para mejorar la precisión de las predicciones en el comercio de divisas.
Creación de una estrategia de retorno a la media basada en el aprendizaje automático
Este artículo propone otro enfoque original para crear sistemas comerciales basados en el aprendizaje automático, usando la clusterización y el etiquetado de transacciones para estrategias de retorno a la media.
Características del Wizard MQL5 que debe conocer (Parte 09): Combinación de clusterización de K-medias con ondas fractales
La clusterización de K-medias adopta el enfoque de agrupar puntos de datos como un proceso centrado inicialmente en una macro representación del conjunto de datos en la que se aplican centroides de clúster generados aleatoriamente. A continuación, dichos centroides se escalan y ajustan para representar con precisión el conjunto de datos. En el presente artículo, hablaremos de la clusterización y de varios usos de la misma.
Inferencia causal en problemas de clasificación de series temporales
En este artículo, examinaremos la teoría de la inferencia causal utilizando el aprendizaje automático, así como la implementación del enfoque personalizado en Python. La inferencia causal y el pensamiento causal tienen sus raíces en la filosofía y la psicología y desempeñan un papel importante en nuestra comprensión de la realidad.
Desarrollo de un sistema de repetición (Parte 48): Conceptos que hay que entender y comprender
¿Qué tal aprender algo nuevo? En este artículo, aprenderás cómo transformar scripts y servicios y por qué es útil hacerlo.
Teoría de categorías en MQL5 (Parte 18): Cuadrado de la naturalidad
El artículo continúa la serie sobre teoría de categorías, presentando transformaciones naturales que suponen un elemento clave de la teoría. Hoy echaremos un vistazo a su definición (aparentemente compleja) y luego profundizaremos en los ejemplos y métodos de aplicación de las transformaciones para pronosticar la volatilidad.
Computación cuántica y trading: Una nueva mirada a las previsiones de precios
En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
Simulación de mercado (Parte 01): Orden cruzada (I)
A partir de este artículo, iniciaremos la segunda fase, que tratará la cuestión del sistema de repetición/simulación de mercado. Entonces, comenzaremos mostrando una posible solución para el cruce de órdenes. Esta solución que presentaré no es definitiva, sino una propuesta para el problema que aún será necesario abordar próximamente.
Algoritmo de optimización basado en la migración animal (Animal Migration Optimization, AMO)
El artículo está dedicado al algoritmo AMO, que modela la migración estacional de los animales en busca de condiciones óptimas para la vida y la reproducción. Las principales características de AMO incluyen el uso de vecindad topológica y un mecanismo de actualización probabilística, lo que lo hace fácil de implementar y flexible para diversas tareas de optimización.