Validación cruzada y fundamentos de la inferencia causal en modelos CatBoost, exportación a formato ONNX
En este artículo veremos un método de autor para crear bots utilizando el aprendizaje automático.
Características del Wizard MQL5 que debe conocer (Parte 08): Perceptrones
Los perceptrones, o redes con una sola capa oculta, pueden ser una buena opción para quienes estén familiarizados con los fundamentos del comercio automatizado y quieran sumergirse en las redes neuronales. Paso a paso veremos como se pueden implementar en el ensamblado de clases de señales que forma parte de las clases del Wizard MQL5 para asesores expertos.
Marcado de datos en el análisis de series temporales (Parte 5): Aplicación y comprobación de asesores usando Socket
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
Teoría de categorías en MQL5 (Parte 7): Dominios múltiples, relativos e indexados
La teoría de categorías es un apartado diverso y en expansión de las matemáticas, que solo recientemente ha comenzado a ser trabajado por la comunidad MQL5. Esta serie de artículos tiene por objetivo repasar algunos de sus conceptos para crear una biblioteca abierta y seguir usando este maravilloso apartado en la creación de estrategias comerciales.
Desarrollo de un sistema de repetición (Parte 59): Un nuevo futuro
La correcta comprensión de las cosas nos permite hacer más con menos esfuerzo. En este artículo, explicaré por qué es necesario ajustar la aplicación de la plantilla antes de que el servicio comience a interactuar realmente con el gráfico. Además, ¿qué tal si mejoramos el indicador del mouse para que podamos hacer más cosas con él?
Teoría de categorías en MQL5 (Parte 21): Transformaciones naturales con ayuda de LDA
Este artículo, el número 21 de nuestra serie, continuaremos analizando las transformaciones naturales y cómo se pueden implementar mediante el análisis discriminante lineal. Como en el artículo anterior, la implementación se presentará en formato de clase de señal.
Redes neuronales: así de sencillo (Parte 25): Practicando el Transfer Learning
En los últimos dos artículos, hemos creado una herramienta que nos permite crear y editar modelos de redes neuronales. Ahora es el momento de evaluar el uso potencial de la tecnología de Transfer Learning en ejemplos prácticos.
Desarrollamos un asesor experto multidivisa (Parte 8): Realizamos pruebas de carga y procesamos la nueva barra
Conforme hemos ido avanzado, hemos utilizado cada vez más instancias simultáneas de estrategias comerciales en un mismo asesor experto. Hoy intentaremos averiguar a cuántas instancias podemos llegar antes de encontrarnos con limitaciones de recursos.
Otras clases en la biblioteca DoEasy (Parte 70): Ampliación de la funcionalidad y actualización automática de la colección de objetos de gráfico
En este artículo, ampliaremos la funcionalidad de los objetos de gráfico, organizaremos la navegación por los gráficos, crearemos capturas de pantalla, y también guardaremos plantillas y las aplicaremos a los gráficos. Asimismo, implementaremos la actualización automática de la colección de objetos de gráfico, sus ventanas y los indicadores en ellas.
Pruebas de permutación de Monte Carlo en MetaTrader 5
En este artículo echaremos un vistazo a cómo podemos realizar pruebas de permutación sobre la base de datos de ticks barajados en cualquier asesor experto utilizando solo MetaTrader 5.
Trabajando con los precios en la biblioteca DoEasy (Parte 62): Actualización de las series de tick en tiempo real, preparando para trabajar con la Profundidad del mercado
En este artículo, vamos a desarrollar la actualización de la colección de datos de tick en tiempo real, y prepararemos una clase del objeto de símbolo para manejar la Profundidad del mercado, con la que empezaremos a trabajar a partir del siguiente artículo.
Aprendizaje automático y Data Science (Parte 24): Predicción de series temporales de divisas mediante modelos de IA convencionales
En los mercados de divisas es muy difícil predecir la tendencia futura sin tener una idea del pasado. Muy pocos modelos de aprendizaje automático son capaces de hacer predicciones futuras considerando valores pasados. En este artículo, vamos a discutir cómo podemos utilizar modelos de inteligencia artificial clásicos (no de series temporales) para superar al mercado.
Medimos la informatividad de los indicadores
El aprendizaje automático se ha convertido en una técnica popular de desarrollo de estrategias. Por lo general, en el trading se presta más atención a la maximización de la rentabilidad y la precisión de los pronósticos. Al mismo tiempo, el procesamiento de los datos utilizados para la construcción de los modelos predictivos permanece en la periferia. En este artículo, analizaremos el uso del concepto de entropía para evaluar la idoneidad de los indicadores en la construcción de modelos predictivos, como se describe en el libro «Testing and Tuning Market Trading Systems» de Timothy Masters.
Algoritmos de optimización de la población: Modificamos la forma y desplazamos las distribuciones de probabilidad y realizamos pruebas con el cefalópodo inteligente (Smart Cephalopod, SC)
Este artículo investigará qué efectos provoca el cambio de la forma de las distribuciones de probabilidad en el rendimiento de los algoritmos de optimización. Hoy realizaremos experimentos con el algoritmo de prueba "Smart Cephalopod" (SC) para evaluar la eficacia de distintas distribuciones de probabilidad en el contexto de problemas de optimización.
Características del Wizard MQL5 que debe conocer (Parte 16): Método de componentes principales con vectores propios
En este artículo analizaremos el método de componentes principales, una técnica de reducción de la dimensionalidad para el análisis de datos, y cómo podemos aplicar este utilizando valores propios y vectores. Como siempre, intentaremos desarrollar un prototipo de la clase de señales del asesor experto que se pueda utilizar en el Wizard MQL5.
Aprendizaje automático y Data Science (Parte 22): Aprovechar las redes neuronales de autocodificadores para realizar operaciones más inteligentes pasando del ruido a la señal
En el vertiginoso mundo de los mercados financieros, separar las señales significativas del ruido es crucial para operar con éxito. Al emplear sofisticadas arquitecturas de redes neuronales, los autocodificadores destacan a la hora de descubrir patrones ocultos en los datos de mercado, transformando datos ruidosos en información práctica. En este artículo, exploramos cómo los autocodificadores están revolucionando las prácticas de negociación, ofreciendo a los operadores una poderosa herramienta para mejorar la toma de decisiones y obtener una ventaja competitiva en los dinámicos mercados actuales.
Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)
En este trabajo, analizaremos un nuevo algoritmo de optimización basado en la población, el CPA (Cyclic Parthenogenesis Algorithm), inspirado en la estrategia reproductiva única de los pulgones. El algoritmo combina dos mecanismos de reproducción: la partenogénesis y la reproducción sexual, y utiliza una estructura de población colonial con posibilidad de migración entre colonias. Las características clave del algoritmo son el cambio adaptativo entre diferentes estrategias de cría y un sistema de intercambio de información entre colonias usando un mecanismo de vuelo.
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 19): Ajustes necesarios
Lo que vamos a hacer aquí es preparar el terreno para que, cuando sea necesario agregar nuevas funciones al código, esto se haga de manera fluida y sencilla. El código actual aún no puede cubrir o manejar algunas cosas que serán necesarias para un progreso significativo. Necesitamos que todo se construya de manera que el esfuerzo de implementar algunas cosas sea lo más mínimo posible. Si esto se hace adecuadamente, tendremos la posibilidad de tener un sistema realmente muy versátil. Capaz de adaptarse muy fácilmente a cualquier situación que deba ser cubierta.
El enfoque cuantitativo en la gestión de riesgos: Aplicación de un modelo VaR para la optimización de portafolios multidivisa con Python y MetaTrader 5
Este artículo revelará el potencial del modelo Value at Risk (VaR) para optimizar un portafolio multidivisa. Usando el poder de Python y la funcionalidad de MetaTrader 5, hoy demostraremos cómo implementar el análisis VaR para la asignación eficiente de capital y la gestión de posiciones. Desde los fundamentos teóricos hasta la aplicación práctica, el artículo abarcará todos los aspectos de la aplicación de uno de los sistemas de cálculo del riesgo más sólidos, el VaR, a la negociación algorítmica.
Trading algorítmico basado en patrones de reversión 3D
Hoy descubriremos al lector el nuevo mundo del trading automatizado con barras 3D. ¿Qué aspecto tiene un robot comercial basado en barras de precios multidimensionales, y pueden los clústeres "amarillos" de barras tridimensionales predecir los cambios de tendencia? ¿Cómo es el trading en múltiples dimensiones?
Trabajando con las series temporales en la biblioteca DoEasy (Parte 57): Objeto de datos del búfer de indicador
En este artículo, vamos a desarrollar el objeto que incluirá todos los datos de un búfer de un indicador. Estos objetos serán necesarios para almacenar los datos de serie de los búferes de indicadores, a través de los cuales será posible ordenar y comparar los datos de los búferes de cualquier indicador, así como otros datos parecidos.
Trabajamos con matrices: ampliando la funcionalidad de la biblioteca estándar de matrices y vectores.
Las matrices sirven de base a los algoritmos de aprendizaje automático y a las computadoras en general por su capacidad para procesar con eficacia grandes operaciones matemáticas. La biblioteca estándar tiene todo lo que necesitamos, pero también podemos ampliarla añadiendo varias funciones al archivo utils.
Características del Wizard MQL5 que debe conocer (Parte 6): Transformada de Fourier
La transformada de Fourier, introducida por Joseph Fourier, es un medio para descomponer puntos de datos de ondas complejos en componentes de ondas simples. Esta característica puede resultar útil para los tráders, así que hablaremos de ella en este artículo.
Redes neuronales: así de sencillo (Parte 38): Exploración auto-supervisada por desacuerdo (Self-Supervised Exploration via Disagreement)
Uno de los principales retos del aprendizaje por refuerzo es la exploración del entorno. Con anterioridad, hemos aprendido un método de exploración basado en la curiosidad interior. Hoy queremos examinar otro algoritmo: la exploración mediante el desacuerdo.
Redes neuronales: así de sencillo (Parte 39): Go-Explore: un enfoque diferente sobre la exploración
Continuamos con el tema de la exploración del entorno en los modelos de aprendizaje por refuerzo. En este artículo, analizaremos otro algoritmo: Go-Explore, que permite explorar eficazmente el entorno en la etapa de entrenamiento del modelo.
Indicador de estimación de fuerza y debilidad de pares de divisas en MQL5 puro
Hoy crearemos un indicador profesional para analizar la fuerza de las divisas en MQL5. Esta guía paso a paso le enseñará cómo desarrollar una poderosa herramienta comercial con un tablero visual para MetaTrader 5. Asimismo, aprenderá a calcular la fuerza de los pares de divisas en múltiples marcos temporales (H1, H4, D1), a implementar actualizaciones dinámicas de datos y a crear una interfaz fácil de usar.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 58): Series temporales de los datos de búferes de indicadores
En conclusión del tema de trabajo con series temporales, vamos a organizar el almacenamiento, la búsqueda y la ordenación de los datos que se guardan en los búferes de indicadores. En el futuro, eso nos permitirá realizar el análisis a base de los valores de los indicadores que se crean a base de la biblioteca en nuestros programas. El concepto general de todas las clases de colección de la biblioteca permite encontrar fácilmente los datos necesarios en la colección correspondiente, y por tanto, lo mismo también será posible en la clase que vamos a crear hoy.
Desarrollo de un sistema de repetición (Parte 34): Sistema de órdenes (III)
En este artículo concluiremos la primera fase de la construcción. Aunque será algo relativamente rápido, explicaré detalles que quizás no se comentaron anteriormente. Pero aquí explicaré algunas cosas que mucha gente no entiende por qué son como son. Uno de estos casos es el del ratón. ¡¡¡¿Sabes por qué tienes que pulsar la tecla Shift o Ctrl en tu teclado?!!!
Funciones de activación neuronal durante el aprendizaje: ¿la clave de una convergencia rápida?
En este artículo presentamos un estudio de la interacción de distintas funciones de activación con algoritmos de optimización en el contexto del entrenamiento de redes neuronales. Se presta especial atención a la comparación entre el ADAM clásico y su versión poblacional al tratar con una amplia gama de funciones de activación, incluidas las funciones oscilatorias ACON y Snake. Usando una arquitectura MLP minimalista (1-1-1) y un único ejemplo de entrenamiento, la influencia de las funciones de activación en el proceso de optimización se aísla de otros factores. Asimismo, propondremos un enfoque para controlar los pesos de la red mediante los límites de las funciones de activación y un mecanismo de reflexión de pesos que evitará los problemas de saturación y estancamiento en el aprendizaje.
Desarrollo de un factor de calidad para los EAs
En este artículo, te explicaremos cómo desarrollar un factor de calidad que tu Asesor Experto (EA) pueda mostrar en el simulador de estrategias. Te presentaremos dos formas de cálculo muy conocidas (Van Tharp y Sunny Harris).
Herramientas econométricas para la previsión de la volatilidad: el modelo GARCH
El presente artículo describe las propiedades de un modelo de heteroscedasticidad condicional no lineal (GARCH). Sobre esta base se construye el indicador iGARCH para predecir la volatilidad un paso por delante. Para estimar los parámetros del modelo se usará la biblioteca de análisis numérico ALGLIB.
Simulación de mercado (Parte 03): Una cuestión de rendimiento
Muchas veces, estamos obligados a dar un paso atrás para luego avanzar. En este artículo, mostraré todos los cambios necesarios para que el rendimiento de los indicadores Mouse y Chart Trade no se viera comprometido. Como bono, presentaré otros cambios que ocurrieron en otros archivos de encabezado, los cuales serán muy utilizados en el futuro.
Asesor Experto Grid-Hedge Modificado en MQL5 (Parte II): Creación de un EA de cuadrícula simple
En este artículo, exploramos la estrategia de cuadrícula (grid) clásica, detallando su automatización mediante un Asesor Experto (EA) en MQL5 y analizando los resultados iniciales del backtest. Destacamos la necesidad de que la estrategia tenga una gran capacidad de retención y esbozamos planes para optimizar parámetros clave como la distancia, el takeProfit y el tamaño de los lotes en futuras entregas. La serie pretende mejorar la eficacia de las estrategias de negociación y su adaptabilidad a las distintas condiciones del mercado.
Trabajando con las series temporales en la biblioteca DoEasy (Parte 53): Clase del indicador abstracto básico
En este artículo, vamos a analizar la creación de la clase del indicador abstracto que a continuación va a usarse como una clase básica para crear objetos de los indicadores estándar y personalizados de la biblioteca.
Operar con noticias de manera sencilla (Parte 3): Ejecución de operaciones
En este artículo, nuestro experto en negociación de noticias comenzará a abrir operaciones basándose en el calendario económico almacenado en nuestra base de datos. Además, mejoraremos los gráficos del experto para mostrar información más relevante sobre los próximos acontecimientos del calendario económico.
Redes neuronales: así de sencillo (Parte 41): Modelos jerárquicos
El presente artículo describe modelos de aprendizaje jerárquico que ofrecen un enfoque eficiente para resolver problemas complejos de aprendizaje automático. Los modelos jerárquicos constan de varios niveles; cada uno de ellos es responsable de diferentes aspectos del problema.
Comercio algorítmico con MetaTrader 5 y R para principiantes
Embárquese en una apasionante exploración en la que el análisis financiero se encuentra con el trading algorítmico mientras desentrañamos el arte de unir a la perfección R y MetaTrader 5. Este artículo es su guía para unir los reinos de la finura analítica en R con las formidables capacidades comerciales de MetaTrader 5.
Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python
En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)
En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)
En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".