Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
preview
Teoría de categorías en MQL5 (Parte 12): Orden

Teoría de categorías en MQL5 (Parte 12): Orden

El artículo forma parte de una serie sobre la implementación de grafos utilizando la teoría de categorías en MQL5 y está dedicado a la relación de orden (Order Theory). Hoy analizaremos dos tipos básicos de orden y exploraremos cómo los conceptos de relación de orden pueden respaldar conjuntos monoides en las decisiones comerciales.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 12): Nacimiento del SIMULADOR (II)

Desarrollar un simulador puede resultar mucho más interesante de lo que parece. Así que demos algunos pasos más en esta dirección, porque las cosas están empezando a ponerse interesantes.
preview
Simulación de mercado (Parte 03): Una cuestión de rendimiento

Simulación de mercado (Parte 03): Una cuestión de rendimiento

Muchas veces, estamos obligados a dar un paso atrás para luego avanzar. En este artículo, mostraré todos los cambios necesarios para que el rendimiento de los indicadores Mouse y Chart Trade no se viera comprometido. Como bono, presentaré otros cambios que ocurrieron en otros archivos de encabezado, los cuales serán muy utilizados en el futuro.
preview
Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Aprendizaje automático y Data Science (Parte 17): ¿Crece el dinero en los árboles? Bosques aleatorios en el mercado Fórex

Este artículo le presentará los secretos de la alquimia algorítmica, introduciéndole con precisión las particularidades de los paisajes financieros. Asimismo, aprenderá cómo los bosques aleatorios transforman los datos en predicciones y le servirán de ayuda al navegar por las complejidades de los mercados financieros. Intentaremos identificar el papel de los bosques aleatorios en los datos financieros y comprobaremos si pueden ayudar a aumentar los beneficios.
preview
Características del Wizard MQL5 que debe conocer (Parte 07): Dendrogramas

Características del Wizard MQL5 que debe conocer (Parte 07): Dendrogramas

La clasificación de datos para el análisis y la predicción es un área muy diversa del aprendizaje automático con un gran número de enfoques y métodos. En este artículo analizaremos uno de estos enfoques, a saber, la Clasificación Jerárquica Aglomerativa (Agglomerative Hierarchical Classification).
preview
Comercio algorítmico con MetaTrader 5 y R para principiantes

Comercio algorítmico con MetaTrader 5 y R para principiantes

Embárquese en una apasionante exploración en la que el análisis financiero se encuentra con el trading algorítmico mientras desentrañamos el arte de unir a la perfección R y MetaTrader 5. Este artículo es su guía para unir los reinos de la finura analítica en R con las formidables capacidades comerciales de MetaTrader 5.
preview
Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)

Algoritmo de Partenogénesis Cíclica - Cyclic Parthenogenesis Algorithm (CPA)

En este trabajo, analizaremos un nuevo algoritmo de optimización basado en la población, el CPA (Cyclic Parthenogenesis Algorithm), inspirado en la estrategia reproductiva única de los pulgones. El algoritmo combina dos mecanismos de reproducción: la partenogénesis y la reproducción sexual, y utiliza una estructura de población colonial con posibilidad de migración entre colonias. Las características clave del algoritmo son el cambio adaptativo entre diferentes estrategias de cría y un sistema de intercambio de información entre colonias usando un mecanismo de vuelo.
preview
Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

Algoritmos de optimización de la población: Algoritmo Mind Evolutionary Computation (Computación Evolutiva Mental, (MEC)

En este artículo, analizaremos un algoritmo de la familia MEC llamado algoritmo MEC Simple de evolución mental (Simple MEC, SMEC). El algoritmo se caracteriza por la belleza de la idea expuesta y su sencillez de aplicación.
preview
Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

Aprendizaje automático y Data Science (Parte 30): La pareja ideal para predecir el mercado bursátil: redes neuronales convolucionales (CNN) y recurrentes (RNN)

En este artículo exploramos la integración dinámica de redes neuronales convolucionales (CNN) y redes neuronales recurrentes (RNN) en la predicción bursátil. Aprovechando la capacidad de las CNN para extraer patrones y la destreza de las RNN para manejar datos secuenciales. Veamos cómo esta potente combinación puede mejorar la precisión y la eficacia de los algoritmos de negociación.
preview
Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Desarrollo de un sistema de repetición (Parte 33): Sistema de órdenes (II)

Vamos a continuar el desarrollo del sistema de órdenes, pero verás que haremos una reutilización masiva de cosas ya vistas en otros artículos. Aun así, tendremos una pequeña recompensa en este artículo. Desarrollaremos, en primer lugar, un sistema que pueda ser operado junto al servidor de negociación real, ya sea usando una cuenta demo o una cuenta real. Haremos uso masivo y extensivo de la plataforma MetaTrader 5 para proporcionarnos todo el soporte que necesitaremos en este inicio de viaje.
preview
Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Características del Wizard MQL5 que debe conocer (Parte 25): Pruebas y operaciones en múltiples marcos temporales

Las estrategias que se basan en múltiples marcos de tiempo no se pueden probar en los Asesores Expertos ensamblados por defecto debido a la arquitectura de código MQL5 utilizada en las clases de ensamblaje. Exploramos una posible solución a esta limitación para las estrategias que buscan utilizar múltiples marcos temporales en un estudio de caso con la media móvil cuadrática.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 05): Vistas previas

Hemos logrado desarrollar una forma de ejecutar la repetición de mercado de manera bastante realista y aceptable. Ahora, vamos a continuar con nuestro proyecto y agregar datos para mejorar el comportamiento de la repetición.
preview
Optimización de carteras en Python y MQL5

Optimización de carteras en Python y MQL5

Este artículo explora técnicas avanzadas de optimización de cartera utilizando Python y MQL5 con MetaTrader 5. Demuestra cómo desarrollar algoritmos para el análisis de datos, la asignación de activos y la generación de señales comerciales, enfatizando la importancia de la toma de decisiones basada en datos en la gestión financiera moderna y la mitigación de riesgos.
preview
Funciones de activación neuronal durante el aprendizaje: ¿la clave de una convergencia rápida?

Funciones de activación neuronal durante el aprendizaje: ¿la clave de una convergencia rápida?

En este artículo presentamos un estudio de la interacción de distintas funciones de activación con algoritmos de optimización en el contexto del entrenamiento de redes neuronales. Se presta especial atención a la comparación entre el ADAM clásico y su versión poblacional al tratar con una amplia gama de funciones de activación, incluidas las funciones oscilatorias ACON y Snake. Usando una arquitectura MLP minimalista (1-1-1) y un único ejemplo de entrenamiento, la influencia de las funciones de activación en el proceso de optimización se aísla de otros factores. Asimismo, propondremos un enfoque para controlar los pesos de la red mediante los límites de las funciones de activación y un mecanismo de reflexión de pesos que evitará los problemas de saturación y estancamiento en el aprendizaje.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 13): Nacimiento del SIMULADOR (III)

Aquí optimizaremos un poco las cosas para facilitar lo que haremos en el próximo artículo. Y también te explicaré cómo puedes visualizar lo que está generando el simulador en términos de aleatoriedad.
preview
Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Redes neuronales: así de sencillo (Parte 40): Enfoques para utilizar Go-Explore con una gran cantidad de datos

Este artículo analizará el uso del algoritmo Go-Explore durante un largo periodo de aprendizaje, ya que la estrategia de elección aleatoria puede no conducir a una pasada rentable a medida que aumenta el tiempo de entrenamiento.
preview
Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

Marcado de datos en el análisis de series temporales (Parte 2): Creando conjuntos de datos con marcadores de tendencias utilizando Python

En esta serie de artículos, presentaremos varias técnicas de marcado de series temporales que pueden producir datos que se ajusten a la mayoría de los modelos de inteligencia artificial (IA). El marcado dirigido de datos puede hacer que un modelo de IA entrenado resulte más relevante para las metas y objetivos del usuario, mejorando la precisión del modelo y ayudando a este a dar un salto de calidad.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 14): Nacimiento del SIMULADOR (IV)

En este artículo, continuaremos con la fase de desarrollo del simulador. Sin embargo, ahora veremos cómo crear efectivamente un movimiento del tipo "RANDOM WALK" (paseo aleatorio). Este tipo de movimiento es bastante intrigante, ya que sirve de base para todo lo que sucede en el mercado de capitales. Además, comenzarás a comprender algunos conceptos esenciales para quienes realizan análisis de mercado.
preview
Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Desarrollo de un sistema de repetición (Parte 36): Haciendo retoques (II)

Una de las cosas que más nos puede complicar la vida como programadores es el hecho de suponer cosas. En este artículo, te mostraré los peligros de hacer suposiciones: tanto en la parte de programación MQL5, donde se asume que un tipo tendrá un tamaño determinado, como cuando se utiliza MetaTrader 5, donde se asume que los diferentes servidores funcionan de la misma manera.
preview
Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

Desarrollo de un sistema de repetición (Parte 37): Pavimentando el terreno (I)

En este artículo, vamos a empezar a hacer algo que ojalá hubiera hecho hace mucho más tiempo. Sin embargo, debido a la falta de "terreno firme", no me sentía seguro para presentarlo públicamente. Ahora, tengo las bases para poder hacer lo que vamos a empezar a hacer a partir de ahora. Es una buena idea centrarse al máximo en comprender el contenido de este artículo, y no lo digo para que lo leas por leer. Quiero y necesito recalcar que, si no entiendes este artículo en concreto, puedes abandonar por completo cualquier esperanza de comprender el contenido de los siguientes.
preview
Métodos de optimización de la biblioteca ALGLIB (Parte I)

Métodos de optimización de la biblioteca ALGLIB (Parte I)

En este artículo nos familiarizaremos con los métodos de optimización de la biblioteca ALGLIB para MQL5. El artículo incluye ejemplos sencillos e ilustrativos de la aplicación de ALGLIB para resolver problemas de optimización, lo que hará que el proceso de dominio de los métodos resulte lo más accesible posible. Asimismo, analizaremos con detalle la conectividad de algoritmos como BLEIC, L-BFGS y NS y resolveremos un sencillo problema de prueba basado en ellos.
preview
Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias de manera sencilla (Parte 1): Creando una base de datos

Operar con noticias puede ser complicado y abrumador, en este artículo repasaremos los pasos para obtener datos de noticias. Además, conoceremos el calendario económico de MQL5 y lo que ofrece.
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos
Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Trabajando con los precios en la biblioteca DoEasy (Parte 61): Colección de series de tick de los símbolos

Dado que el programa puede utilizar varios símbolos, entonces, es necesario crear su propia lista para cada uno de estos símbolos. En este artículo, vamos a combinar estas listas en una colección de datos de tick. En realidad, se trata de una lista común a base de la clase de la matriz dinámica de punteros a las instancias de la clase CObject y sus herederos de la Biblioteca estándar.
preview
Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Desarrollo de un sistema de repetición (Parte 40): Inicio de la segunda fase (I)

Esta es la nueva fase del sistema de repetición/simulación. En esta etapa, la conversación será realmente una conversación, y el contenido se volverá bastante denso. Les insto a leer el artículo con atención y a utilizar siempre las referencias que se proporcionen. Esto les ayudará a comprender mejor lo que se les está explicando.
preview
Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

Teoría de categorías en MQL5 (Parte 15): Funtores con grafos

El artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5, analizando los funtores como un puente entre grafos y conjuntos. Volveremos nuevamente a los datos del calendario y, a pesar de sus limitaciones en el uso de un simulador de estrategias, justificaremos el uso de funtores para predecir la volatilidad mediante la correlación.
preview
Teoría de categorías en MQL5 (Parte 2)

Teoría de categorías en MQL5 (Parte 2)

La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Desarrollo de un sistema de repetición (Parte 39): Pavimentando el terreno (II)

Antes de comenzar la segunda fase del desarrollo, es necesario reforzar algunas ideas. Entonces, ¿sabes cómo forzar al MQL5 a hacer lo que es necesario? ¿Has intentado ir más allá de lo que informa la documentación? Si no, prepárate. Porque empezaré a hacer cosas mucho más allá de lo que la mayoría hace normalmente.
preview
Procesos no estacionarios y regresión espuria

Procesos no estacionarios y regresión espuria

El presente artículo pretende demostrar la aparición de regresiones espurias cuando se intenta aplicar el análisis de regresión a procesos no estacionarios utilizando la simulación de Montecarlo.
preview
Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Predicción de tipos de cambio mediante métodos clásicos de aprendizaje automático: Modelos Logit y Probit

Hoy hemos intentado construir un experto comercial para predecir las cotizaciones de los tipos de cambio. El algoritmo se basa en modelos de clasificación clásicos: la regresión logística y probit. Como filtro para las señales comerciales, hemos utilizado el criterio de la razón de verosimilitud.
preview
Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

Aprendizaje automático y Data Science (Parte 20): Elección entre LDA y PCA en tareas de trading algorítmico en MQL5

En este artículo analizaremos los métodos de reducción de la dimensionalidad y su aplicación en el entorno comercial MQL5. En concreto, exploraremos los matices del análisis discriminante lineal (LDA) y el análisis de componentes principales (PCA) y analizaremos su impacto en el desarrollo de estrategias y el análisis de mercados.
preview
Teoría de categorías en MQL5 (Parte 3)

Teoría de categorías en MQL5 (Parte 3)

La teoría de categorías es una rama diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL5. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

Aprendizaje automático y Data Science (Parte 19): Potencie sus modelos de IA con AdaBoost

AdaBoost, un potente algoritmo de refuerzo diseñado para elevar el rendimiento de sus modelos de IA. AdaBoost, abreviatura de Adaptive Boosting (refuerzo adaptativo), es una sofisticada técnica de aprendizaje por conjuntos que integra a la perfección los aprendices débiles, potenciando su fuerza predictiva colectiva.
preview
Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Desarrollo de un sistema de repetición (Parte 42): Proyecto Chart Trade (I)

Vamos a crear algo más interesante. El código que mostré antes quedará completamente obsoleto. No quiero arruinar la sorpresa. Sigue el artículo para entender mejor. Desde el inicio de esta secuencia sobre cómo desarrollar un sistema de repetición/simulación, he dicho que la idea es usar la plataforma MetaTrader 5 de manera idéntica, tanto en el sistema que estamos desarrollando como en el mercado real. Es importante que esto se haga de manera adecuada. No querrás entrenar y aprender a luchar usando determinadas herramientas y en el momento de la pelea tener que usar otras.
preview
Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

Algoritmos de optimización de la población: Algoritmo Boids, o algoritmo de comportamiento de bandada (Algoritmo Boids, Boids)

En este artículo, realizamos un estudio del algoritmo Boids, que se basa en ejemplos únicos del comportamiento de enjambre o bandada de animales. El algoritmo Boids, a su vez, ha servido de base para la creación de toda una clase de algoritmos agrupados bajo el nombre de "inteligencia de enjambre".
preview
Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Teoría de categorías en MQL5 (Parte 19): Inducción cuadrática de la naturalidad

Continuamos analizando las transformaciones naturales considerando la inducción cuadrática de la naturalidad. Pequeñas restricciones en la implementación de las capacidades multidivisa para los asesores ensamblados usando el wizard MQL5 significan que estamos demostrando nuestras capacidades en la clasificación de datos usando un script. Las principales áreas de aplicación son la clasificación de las variaciones de precios y, como consecuencia, su previsión.
preview
Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)

Algoritmos de optimización de la población: Evolución de grupos sociales (Evolution of Social Groups, ESG)

En este artículo analizaremos el principio de construcción de algoritmos multipoblacionales y como ejemplo de este tipo de algoritmos consideraremos la evolución de grupos sociales (ESG), un nuevo algoritmo de autor. Así, analizaremos los conceptos básicos, los mecanismos de interacción con la población y las ventajas de este algoritmo, y revisaremos su rendimiento en problemas de optimización.
preview
Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

Integración de MQL5 con paquetes de procesamiento de datos (Parte 2): Aprendizaje automático (Machine Learning, ML) y análisis predictivo

En nuestra serie sobre la integración de MQL5 con paquetes de procesamiento de datos, nos adentramos en la poderosa combinación del aprendizaje automático y el análisis predictivo. Exploraremos cómo conectar a la perfección MQL5 con librerías populares de aprendizaje automático, para habilitar sofisticados modelos predictivos para los mercados financieros.
preview
Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble

Teoría de Categorías en MQL5 (Parte 23): Otra mirada a la media móvil exponencial doble

En este artículo, seguiremos analizando desde un nuevo ángulo los indicadores comerciales más populares. Vamos a procesar una composición horizontal de transformaciones naturales. El mejor indicador para ello será la media móvil exponencial doble (Double Exponential Moving Average, DEMA).
preview
Teoría de categorías (Parte 9): Acciones de monoides

Teoría de categorías (Parte 9): Acciones de monoides

El presente artículo continúa la serie sobre la implementación de la teoría de categorías en MQL5. En este artículo examinaremos las acciones de los monoides como un medio de transformación de los monoides descritos en el artículo anterior para aumentar sus aplicaciones.
preview
Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

Características del Wizard MQL5 que debe conocer (Parte 13): DBSCAN para la clase experta de señales

El agrupamiento basado en densidad para aplicaciones con ruido (DBSCAN) es una forma no supervisada de agrupar datos que apenas requiere parámetros de entrada, salvo solo 2, lo cual, en comparación con otros enfoques como k-means, es una ventaja. Profundizamos en cómo esto podría ser constructivo para probar y eventualmente operar con Asesores Expertos montados por Wizard MQL5.