Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
preview
Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Características del Wizard MQL5 que debe conocer (Parte 11): Muros numéricos

Los muros numéricos (Number Walls) son una variante de los registros de desplazamiento lineal hacia atrás (Linear Shift Back Registers) que pre-evalúan las secuencias para su predictibilidad mediante la comprobación de la convergencia. Veamos cómo se pueden utilizar estas ideas en MQL5.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 09): Eventos personalizados

Aquí veremos cómo accionar eventos personalizados y mejorar la cuestión de cómo el indicador informa del estado del servicio de repetición/simulación.
preview
Computación cuántica y trading: Una nueva mirada a las previsiones de precios

Computación cuántica y trading: Una nueva mirada a las previsiones de precios

En el artículo analizaremos un enfoque innovador para predecir los movimientos de precios en los mercados financieros utilizando la computación cuántica. La atención se centrará en la aplicación del algoritmo Quantum Phase Estimation (QPE) para encontrar precursores de patrones de precios, lo que permitirá acelerar considerablemente el proceso de análisis de los datos de mercado.
preview
Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)

Desarrollo de un sistema de repetición (Parte 43): Proyecto Chart Trade (II)

Gran parte de las personas que quieren, o desean aprender a programar, no tienen en realidad idea de lo que están haciendo. Lo que hacen es intentar crear las cosas de una determinada manera. Sin embargo, cuando programamos no estamos realmente intentando crear una solución. Si intentas hacerlo de esta manera, generarás más problemas que soluciones. Aquí haremos algo un poco más avanzado, y por consecuencia diferente.
preview
Simulación de mercado (Parte 01): Orden cruzada (I)

Simulación de mercado (Parte 01): Orden cruzada (I)

A partir de este artículo, iniciaremos la segunda fase, que tratará la cuestión del sistema de repetición/simulación de mercado. Entonces, comenzaremos mostrando una posible solución para el cruce de órdenes. Esta solución que presentaré no es definitiva, sino una propuesta para el problema que aún será necesario abordar próximamente.
preview
El método de agrupamiento para el manejo de datos: Implementación del algoritmo iterativo multicapa en MQL5

El método de agrupamiento para el manejo de datos: Implementación del algoritmo iterativo multicapa en MQL5

En este artículo describimos la implementación del algoritmo iterativo multicapa del método de agrupamiento para el manejo de datos en MQL5.
preview
Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Marcado de datos en el análisis de series temporales (Parte 6): Aplicación y prueba en EA utilizando ONNX

Esta serie de artículos presenta varios métodos de etiquetado de series temporales, que pueden crear datos que se ajusten a la mayoría de los modelos de inteligencia artificial, y el etiquetado de datos específico según las necesidades puede hacer que el modelo de inteligencia artificial entrenado se ajuste más al diseño esperado, mejorar la precisión de nuestro modelo, ¡e incluso ayudar al modelo a dar un salto cualitativo!
preview
Algoritmo de optimización basado en ecosistemas artificiales —  Artificial Ecosystem-based Optimization (AEO)

Algoritmo de optimización basado en ecosistemas artificiales — Artificial Ecosystem-based Optimization (AEO)

El artículo analiza el algoritmo metaheurístico AEO que modela las interacciones entre los componentes del ecosistema mediante la creación de una población inicial de soluciones y la aplicación de estrategias de actualización adaptativas, y detalla las etapas de funcionamiento del AEO, incluidas las fases de consumo y descomposición, así como diversas estrategias de comportamiento de los agentes. El artículo presenta las peculiaridades y ventajas de este algoritmo.
preview
Algoritmo de agujero negro — Black Hole Algorithm (BHA)

Algoritmo de agujero negro — Black Hole Algorithm (BHA)

El algoritmo de agujero negro (BHA) utiliza los principios de la gravedad de los agujeros negros para optimizar las soluciones. En este artículo, analizaremos cómo el BHA atrae las mejores soluciones evitando los extremos locales, y por qué este algoritmo se ha convertido en una poderosa herramienta para resolver problemas complejos. Descubra cómo ideas sencillas pueden dar lugar a resultados impresionantes en el mundo de la optimización.
preview
Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)

Algoritmos de optimización de la población: Resiliencia ante el estancamiento en los extremos locales (Parte II)

Hoy continuaremos un experimento cuyo objetivo es investigar el comportamiento de los algoritmos de optimización basados en poblaciones en el contexto de su capacidad para abandonar eficazmente los mínimos locales cuando la diversidad de la población es baja y alcanzar los máximos globales. Resultados del estudio.
preview
Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias

Utilización del modelo de aprendizaje automático CatBoost como filtro para estrategias de seguimiento de tendencias

CatBoost es un potente modelo de aprendizaje automático basado en árboles que se especializa en la toma de decisiones basada en características estacionarias. Otros modelos basados en árboles, como XGBoost y Random Forest, comparten características similares en cuanto a su solidez, capacidad para manejar patrones complejos e interpretabilidad. Estos modelos tienen una amplia gama de usos, desde el análisis de características hasta la gestión de riesgos. En este artículo, vamos a explicar el procedimiento para utilizar un modelo CatBoost entrenado como filtro para una estrategia clásica de seguimiento de tendencias con cruce de medias móviles.
preview
Características del Wizard MQL5 que debe conocer (Parte 19): Inferencia bayesiana

Características del Wizard MQL5 que debe conocer (Parte 19): Inferencia bayesiana

La inferencia bayesiana es la adopción del teorema de Bayes para actualizar la hipótesis de probabilidad a medida que se dispone de nueva información. Esto intuitivamente se inclina hacia la adaptación en el análisis de series de tiempo, por lo que observamos cómo podríamos usarlo para crear clases personalizadas no solo para la señal sino también para la gestión de dinero y los trailing stops.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 3): Asesor Experto Analytics Master

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 3): Asesor Experto Analytics Master

Pasar de un simple script de trading a un Asesor Experto (EA) totalmente funcional puede mejorar significativamente su experiencia de trading. Imagina tener un sistema que supervisa automáticamente tus gráficos, realiza cálculos esenciales en segundo plano y proporciona actualizaciones periódicas cada dos horas. Este EA estaría equipado para analizar métricas clave que son cruciales para tomar decisiones comerciales informadas, lo que garantiza que usted tenga acceso a la información más actualizada para ajustar sus estrategias de manera eficaz.
preview
Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)

Redes neuronales en el trading: Conjunto de agentes con uso de mecanismos de atención (Final)

En el artículo anterior, presentamos el framework adaptativo multiagente MASAAT, que usa un conjunto de agentes para analizar de forma cruzada una serie temporal multimodal a diferentes escalas de representación de datos. Hoy llevaremos a una conclusión lógica el trabajo iniciado para aplicar los planteamientos de este framework usando MQL5.
preview
Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)

Algoritmo de viaje evolutivo en el tiempo — Time Evolution Travel Algorithm (TETA)

Se trata de un algoritmo propio. En este artículo, le presentaremos el Algoritmo de viaje evolutivo en el tiempo (TETA), inspirado en el concepto de universos paralelos y flujos temporales. La idea básica del algoritmo es que, si bien no es posible viajar en el tiempo en el sentido habitual, podemos elegir una secuencia de acontecimientos que generen realidades distintas.
preview
El método de manejo de datos en grupo: implementación del algoritmo combinatorio en MQL5

El método de manejo de datos en grupo: implementación del algoritmo combinatorio en MQL5

En este artículo continuamos nuestra exploración de la familia de algoritmos del método de manejo de datos en grupo, con la implementación del algoritmo combinatorio junto con su encarnación refinada, el algoritmo combinatorio selectivo en MQL5.
preview
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica

Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Práctica

En este artículo, seguiremos profundizando en la aplicación del algoritmo ACMO (Atmospheric Cloud Model Optimisation). En particular, discutiremos dos aspectos clave: el movimiento de las nubes hacia regiones de bajas presiones y la modelización del proceso de lluvia, incluida la inicialización de las gotas y su distribución entre las nubes. También analizaremos otras técnicas que desempeñan un papel importante a la hora de gestionar el estado de las nubes y garantizar su interacción con el entorno.
preview
Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt

Entrenamos un perceptrón multicapa usando el algoritmo de Levenberg-Marquardt

Este artículo le presentaremos una implementación del algoritmo Levenberg-Marquardt para el entrenamiento de redes neuronales de propagación directa. Asimismo, realizaremos un análisis comparativo del rendimiento usando algoritmos de la biblioteca scikit-learn Python. También discutiremos preliminarmente los métodos de aprendizaje más sencillos como el descenso de gradiente, el descenso de gradiente con impulso y el descenso de gradiente estocástico.
preview
Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5

Vectores y valores propios: Análisis exploratorio de datos en MetaTrader 5

En este artículo exploramos diferentes formas en que los vectores propios y los valores propios pueden aplicarse en el análisis exploratorio de datos para revelar relaciones únicas en los datos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 08): Bloqueo del indicador

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 08): Bloqueo del indicador

En este artículo te mostraré cómo bloquear un indicador, simplemente utilizando el lenguaje MQL5, de una forma muy interesante y sorprendente.
preview
Desarrollo de un sistema de repetición (Parte 56): Adecuación de los módulos

Desarrollo de un sistema de repetición (Parte 56): Adecuación de los módulos

Aunque los módulos se comunican de manera adecuada, existe un error al intentar utilizar el indicador de mouse en el servicio de repetición. Necesitamos corregir esto ahora, antes de pasar al siguiente paso. Además, se ha corregido una incidencia en el código del indicador de mouse. Esta versión finalmente se ha vuelto estable y está debidamente finalizada.
preview
Visualización de transacciones en un gráfico (Parte 2): Visualización gráfica de datos

Visualización de transacciones en un gráfico (Parte 2): Visualización gráfica de datos

Aquí vamos a desarrollar un script desde cero que simplifica la descarga de pantallas de impresión de operaciones para analizar las entradas de operaciones. Toda la información necesaria sobre una operación debe mostrarse cómodamente en un gráfico con la posibilidad de dibujar distintos plazos.
preview
Superar los retos de integración de ONNX

Superar los retos de integración de ONNX

ONNX es una gran herramienta para la integración de código complejo de IA entre diferentes plataformas, es una gran herramienta que viene con algunos desafíos que uno debe abordar para obtener el máximo provecho de ella, En este artículo se discuten los problemas comunes que podría enfrentar y cómo mitigarlos.
preview
Simulación de mercado (Parte 02): Orden cruzada (II)

Simulación de mercado (Parte 02): Orden cruzada (II)

A diferencia de lo que se vio en el artículo anterior, aquí vamos a hacer el control de selección en el Asesor Experto. Aunque esta no es aún una solución definitiva, nos servirá por ahora. Así que acompaña el artículo para entender cómo implementar una de las soluciones posibles.
preview
Desarrollo de un sistema de repetición (Parte 46): Proyecto Chart Trade (V)

Desarrollo de un sistema de repetición (Parte 46): Proyecto Chart Trade (V)

¿Cansado de perder tiempo buscando ese archivo que es necesario para que tu aplicación funcione? ¿Qué tal si incluimos todo en el ejecutable? Así nunca perderás tiempo buscando las cosas. Sé que muchos utilizan exactamente esa forma de distribuir y guardar las cosas. Pero existe una manera mucho más adecuada. Al menos en lo que respecta a la distribución de ejecutables y almacenamiento de los mismos. La forma que explicaré aquí, puede ser de gran ayuda. Ya que puedes usar el propio MetaTrader 5 como un gran ayudante, así como el MQL5. No es algo tan complejo ni difícil de entender.
preview
Desarrollo de un sistema de repetición (Parte 57): Diseccionamos el servicio de prueba

Desarrollo de un sistema de repetición (Parte 57): Diseccionamos el servicio de prueba

Un último detalle: Aunque no se incluye en este artículo, explicaré el código del servicio que se estará utilizando en el próximo, ya que usaremos este mismo código como trampolín para lo que realmente estamos desarrollando. Así que ten un poco de paciencia y espera el próximo artículo, pues las cosas se están poniendo cada día más interesantes.
preview
Características del Wizard MQL5 que debe conocer (Parte 37): Regresión de procesos gaussianos con núcleos Matérn y lineales

Características del Wizard MQL5 que debe conocer (Parte 37): Regresión de procesos gaussianos con núcleos Matérn y lineales

Los núcleos lineales son la matriz más simple de su tipo utilizada en el aprendizaje automático para regresión lineal y máquinas de vectores de soporte. Por otro lado, el kernel Matérn es una versión más versátil de la función de base radial que analizamos en un artículo anterior, y es apto para mapear funciones que no son tan suaves como asumiría la RBF. Creamos una clase de señal personalizada que utiliza ambos núcleos para pronosticar condiciones largas y cortas.
preview
Métodos de William Gann (Parte III): ¿Funciona la astrología?

Métodos de William Gann (Parte III): ¿Funciona la astrología?

¿Las posiciones de los planetas y las estrellas afectan los mercados financieros? Armémonos de estadísticas y big data y embarquémonos en un viaje apasionante hacia el mundo donde las estrellas y los gráficos bursátiles se cruzan.
preview
Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)

Desarrollo de un sistema de repetición (Parte 61): Presionando play en el servicio (II)

En este artículo, analizaremos las modificaciones necesarias para que el sistema de repetición/simulación pueda operar de manera más eficiente y segura. También mostraré algo de interés para quienes deseen aprovechar al máximo el uso de clases. Además, abordaré un problema específico de MQL5 que reduce el rendimiento del código al trabajar con clases y explicaré cómo resolverlo.
preview
Desarrollo de un sistema de repetición (Parte 55): Módulo de control

Desarrollo de un sistema de repetición (Parte 55): Módulo de control

En este artículo, implementaremos el indicador de control de manera que pueda integrarse en el sistema de mensajes que está en desarrollo. Aunque no es algo muy complejo de hacer, es necesario entender algunos detalles sobre cómo inicializar este módulo. El contenido expuesto aquí tiene como objetivo, pura y simplemente, la didáctica. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
preview
Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)

Modificaciones más notables del algoritmo de búsqueda cooperativa artificial (Artificial Cooperative Search, ACSm)

Aquí consideraremos la evolución del algoritmo ACS: tres modificaciones destinadas a mejorar las características de convergencia y la eficiencia del algoritmo. Transformación de uno de los principales algoritmos de optimización. De las modificaciones matriciales a los planteamientos revolucionarios en materia de formación de la población.
preview
Desarrollo de un sistema de repetición (Parte 58): Volvemos a trabajar en el servicio

Desarrollo de un sistema de repetición (Parte 58): Volvemos a trabajar en el servicio

Después de haber tomado un descanso en el desarrollo y perfeccionamiento del servicio usado en la repetición/simulación, retomaremos el trabajo en él. Ahora que no utilizaremos algunos recursos, como las variables globales del terminal, es necesario reestructurar por completo algunas partes de él. No se preocupen, este proceso se explicará adecuadamente para que todos puedan seguir el desarrollo del servicio.
preview
Características del Wizard MQL5 que debe conocer (Parte 14): Previsión multiobjetivo de series temporales con STF

Características del Wizard MQL5 que debe conocer (Parte 14): Previsión multiobjetivo de series temporales con STF

La fusión espacio-temporal, que utiliza métricas espaciales y temporales en la modelización de datos, es útil sobre todo en teledetección y otras muchas actividades visuales para comprender mejor nuestro entorno. Gracias a un artículo publicado, adoptamos un enfoque novedoso en su uso examinando su potencial para los comerciantes.
preview
Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)

Operar con noticias de manera sencilla (Parte 5): Ejecución de operaciones (II)

Este artículo ampliará la clase de gestión de operaciones para incluir órdenes de compra y venta con límite (buy-stop y sell-stop) con el fin de operar con eventos de noticias e implementar una restricción de vencimiento en estas órdenes para evitar cualquier operación nocturna. Se incorporará una función de deslizamiento (slippage) al experto para intentar prevenir o minimizar el posible deslizamiento que puede producirse al utilizar órdenes stop en las operaciones, especialmente durante eventos noticiosos.
preview
Algoritmo de Big Bang y Big Crunch

Algoritmo de Big Bang y Big Crunch

En el presente artículo, le presentamos el método Big Bang - Big Crunch, que consta de dos fases clave: la creación cíclica de puntos aleatorios y su compresión hasta una solución óptima. Este enfoque combina exploración y refinamiento, lo cual permite encontrar soluciones progresivamente mejores y descubre nuevas oportunidades en el campo de la optimización.
preview
Desarrollo de un sistema de repetición (Parte 54): El nacimiento del primer módulo

Desarrollo de un sistema de repetición (Parte 54): El nacimiento del primer módulo

En este artículo, veremos cómo construir el primero de los módulos, realmente funcional, para ser utilizado en el sistema de repetición/simulador. Además de tener como propósito general servir para otras cosas también. El módulo que se construirá aquí será el del indicador de mouse.
preview
Desarrollo de un sistema de repetición (Parte 62): Presionando play en el servicio (III)

Desarrollo de un sistema de repetición (Parte 62): Presionando play en el servicio (III)

En este artículo comenzaremos a abordar el problema del exceso de ticks, que puede afectar a la aplicación cuando usamos datos reales. Este exceso complica muchas veces la correcta temporización necesaria para construir la barra de un minuto dentro de la ventana adecuada.
preview
Selección de características paso a paso en MQL5

Selección de características paso a paso en MQL5

En este artículo, presentamos una versión modificada de la selección de características paso a paso, implementada en MQL5. Este enfoque se basa en las técnicas descritas en Algoritmos modernos de minería de datos en C++ y CUDA C de Timothy Masters.
preview
Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal

Características del Wizard MQL5 que debe conocer (Parte 47): Aprendizaje por refuerzo con diferencia temporal

La diferencia temporal es otro algoritmo del aprendizaje por refuerzo que actualiza los valores Q basándose en la diferencia entre las recompensas previstas y las reales durante el entrenamiento del agente. Se centra específicamente en la actualización de los valores Q sin tener en cuenta su emparejamiento estado-acción. Por lo tanto, veremos cómo aplicar esto, tal y como hemos hecho en artículos anteriores, en un Asesor Experto creado mediante un asistente.
preview
Desarrollo de un sistema de repetición (Parte 70): Ajuste del tiempo (III)

Desarrollo de un sistema de repetición (Parte 70): Ajuste del tiempo (III)

En este artículo, mostraré cómo utilizar la función CustomBookAdd de manera correcta y funcional. Aunque pueda parecer sencillo, tiene muchas implicaciones. Por ejemplo, permite indicar al indicador de mouse si el símbolo personalizado está en subasta, en negociación o si el mercado está cerrado. El contenido expuesto aquí tiene como único objetivo ser didáctico. En ningún caso debe considerarse una aplicación cuya finalidad sea distinta a la de aprender y estudiar los conceptos mostrados.