Algoritmo de optimización del billar — Billiards Optimization Algorithm (BOA)
El método BOA, inspirado en el clásico juego del billar, modela el proceso de búsqueda de soluciones óptimas como un juego de bolas que intentan acertar en las troneras que representan los mejores resultados. En este artículo revisaremos los fundamentos del BOA, su modelo matemático y su eficacia para resolver diversos problemas de optimización.
Optimización del modelo de nubes atmosféricas — Atmosphere Clouds Model Optimization (ACMO): Teoría
Este artículo se centra en el algoritmo metaheurístico Atmosphere Clouds Model Optimisation (ACMO), que modela el comportamiento de las nubes para resolver problemas de optimización. El algoritmo usa los principios de generación, movimiento y propagación de nubes, adaptándose a las "condiciones meteorológicas" del espacio de soluciones. El artículo revela cómo una simulación meteorológica del algoritmo encuentra soluciones óptimas en un espacio de posibilidades complejo y detalla las etapas del ACMO, incluida la preparación del "cielo", el nacimiento de las nubes, su movimiento y la concentración de la lluvia.
Análisis de múltiples símbolos con Python y MQL5 (Parte II): Análisis de componentes principales para la optimización de carteras
La gestión del riesgo de las cuentas de trading es un reto para todos los operadores. ¿Cómo podemos desarrollar aplicaciones de trading que aprendan dinámicamente los modos de riesgo alto, medio y bajo para diversos símbolos en MetaTrader 5? Al utilizar el Análisis de Componentes Principales (Principal Components Analysis, PCA), obtenemos un mejor control sobre la variación de la cartera. Demostraré cómo crear aplicaciones que aprendan estos tres modos de riesgo a partir de datos de mercado obtenidos de MetaTrader 5.
Estrategias de reversión a la media con RSI2 de Larry Connors para operativa intradía
Larry Connors es un reconocido operador bursátil y autor, conocido principalmente por su trabajo en el ámbito del trading cuantitativo y estrategias como el RSI de dos períodos (RSI2), que ayuda a identificar condiciones de sobrecompra y sobreventa a corto plazo en los mercados. En este artículo, primero explicaremos la motivación detrás de nuestra investigación, luego recrearemos tres de las estrategias más famosas de Connors en MQL5 y las aplicaremos al trading intradía del CFD del índice S&P 500.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 11): EA de señales Heikin Ashi
MQL5 ofrece infinitas oportunidades para desarrollar sistemas de trading automatizados adaptados a sus preferencias. ¿Sabías que incluso puede realizar cálculos matemáticos complejos? En este artículo, presentamos la técnica japonesa Heikin-Ashi como una estrategia de trading automatizada.
Algoritmo de campo eléctrico artificial (AEFA) — Artificial Electric Field Algorithm (AEFA)
Este artículo presenta el algoritmo de campo eléctrico artificial (AEFA) inspirado en la ley de Coulomb de la fuerza electrostática. El algoritmo modela fenómenos eléctricos para resolver problemas de optimización complejos usando partículas cargadas y las interacciones de estas. El AEFA presenta propiedades únicas en el contexto de otros algoritmos relacionados con las leyes de la naturaleza.
Optimización por herencia sanguínea — Blood inheritance optimization (BIO)
Les presento mi nuevo algoritmo basado en la población, el BIO (Blood Inheritance Optimization), inspirado en el sistema de herencia del grupo sanguíneo humano. En este algoritmo, cada solución tiene un "grupo sanguíneo" distinto que determina su forma de evolucionar. Al igual que en la naturaleza, el grupo sanguíneo de un niño se hereda según reglas específicas, en el BIO las nuevas soluciones obtienen sus características mediante un sistema de herencia y mutaciones.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 17): Asesor experto TrendLoom Tool
Como observador de la acción del precio y trader, he notado que cuando una tendencia se confirma en múltiples marcos temporales, suele continuar en esa dirección. Lo que puede variar es la duración de la tendencia, y esto depende del tipo de trader que seas, si mantienes posiciones a largo plazo o te dedicas al scalping. Los plazos que elijas para la confirmación desempeñan un papel crucial. Echa un vistazo a este artículo para conocer un sistema rápido y automatizado que te ayuda a analizar la tendencia general en diferentes marcos temporales con solo hacer clic en un botón o mediante actualizaciones periódicas.
Aprendizaje automático en la negociación de tendencias unidireccionales tomando el oro como ejemplo
En este artículo analizaremos un enfoque interesante: la negociación solo en la dirección seleccionada (compra o venta). Para ello, utilizaremos técnicas de inferencia causal y aprendizaje automático.
Algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO)
En este artículo, nos familiarizaremos con el algoritmo de optimización de sociedad anárquica (Anarchic Society Optimization, ASO) y discutiremos cómo un algoritmo basado en el comportamiento irracional y aventurero de los participantes en una sociedad anárquica (un sistema anómalo de interacción social libre de poder centralizado y varios tipos de jerarquías) es capaz de explorar el espacio de soluciones y evitar las trampas del óptimo local. El artículo presenta una estructura ASO unificada aplicable tanto a problemas continuos como discretos.
Algoritmo de optimización de neuroboides — Neuroboids Optimization Algorithm (NOA)
Hoy hablaremos de una nueva metaheurística de optimización inspirada en la naturaleza: el NOA (Neuroboids Optimisation Algorithm), que combina principios de inteligencia colectiva y redes neuronales. A diferencia de los métodos clásicos, el algoritmo usa una población de "neuroboides" autodidactas, cada uno con su propia red neuronal que adapta la estrategia de búsqueda en tiempo real. En el artículo se revela la arquitectura del algoritmo, los mecanismos de autoaprendizaje de los agentes y las perspectivas de aplicación de este enfoque híbrido a problemas complejos de optimización.
Simulación de mercado (Parte 05): Creación de la clase C_Orders (II)
En este artículo, explicaré cómo Chart Trade, junto con el asesor experto, gestionará la solicitud de cierre de todas las posiciones abiertas del usuario. Parece sencillo, pero hay algunos factores que complican la situación y que es necesario saber gestionar.
Uso de reglas de asociación en el análisis de datos de Forex
¿Cómo aplicar las reglas predictivas del análisis minorista de supermercados al mercado Forex real? ¿Cómo se relacionan las compras de galletas, leche y pan con las transacciones bursátiles? El artículo analiza un enfoque innovador del trading algorítmico basado en el uso de reglas de asociación.
Desarrollo de un sistema de repetición (Parte 67): Refinando el indicador de control
En este artículo, mostraré lo que un poco de refinamiento en el código es capaz de lograr. Dicho refinamiento tiene como objetivo simplificar nuestro código, hacer un mayor uso de las llamadas a la biblioteca de MQL5 y, sobre todo, conseguir que sea mucho más estable, seguro y fácil de usar en otros códigos que desarrollemos en el futuro. El contenido expuesto aquí tiene un propósito puramente didáctico. En ningún caso debe considerarse como una aplicación cuya finalidad no sea el aprendizaje y estudio de los conceptos mostrados.
Redefiniendo los indicadores de MQL5 y MetaTrader 5
Un enfoque innovador para recopilar información de indicadores en MQL5 que permite un análisis de datos más flexible y optimizado, al permitir a los desarrolladores pasar entradas personalizadas a los indicadores para realizar cálculos inmediatos. Este enfoque resulta especialmente útil para el trading algorítmico, ya que proporciona un mayor control sobre la información procesada por los indicadores, superando las limitaciones tradicionales.
Pruebas de robustez en asesores expertos
En el desarrollo de una estrategia hay muchos detalles complejos a tener en cuenta, muchos de los cuales no se destacan para los traders principiantes. Como resultado, muchos comerciantes, incluido yo mismo, hemos tenido que aprender estas lecciones a las duras penas. Este artículo se basa en mis observaciones de errores comunes que la mayoría de los traders principiantes encuentran al desarrollar estrategias en MQL5. Ofrecerá una variedad de consejos, trucos y ejemplos para ayudar a identificar la descalificación de un EA y probar la solidez de nuestros propios EA de una manera fácil de implementar. El objetivo es educar a los lectores, ayudándolos a evitar futuras estafas al comprar EA, así como a prevenir errores en el desarrollo de su propia estrategia.
Aprendizaje automático en la negociación de tendencias unidireccionales tomando el oro como ejemplo
En este artículo analizaremos un enfoque interesante: la negociación solo en la dirección seleccionada (compra o venta). Para ello, utilizaremos técnicas de inferencia causal y aprendizaje automático.
Optimización de Battle Royale — Battle Royale Optimizer (BRO)
El artículo describe un innovador enfoque de optimización que combina la competición espacial de soluciones con el estrechamiento adaptativo del espacio de búsqueda, lo cual convierte al Battle Royale Optimizer en una prometedora herramienta para el análisis financiero.
Desarrollo de un sistema de repetición (Parte 63): Presionando play en el servicio (IV)
En este archivo, resolveremos por fin los problemas de simulación de los ticks en una barra de un minuto, de manera que puedan coexistir con ticks reales. De esta manera, evitaremos enfrentarnos a problemas en el futuro. El contenido expuesto aquí tiene como único objetivo la didáctica. En ningún caso debe interpretarse como una aplicación cuya finalidad no sea el aprendizaje y el estudio de los conceptos mostrados.
Gestor de riesgos profesional remoto para Forex en Python
Hoy crearemos un gestor de riesgos profesional remoto para Forex en Python, y los desplegaremos en un servidor paso a paso. En el transcurso del artículo entenderemos cómo gestionar programáticamente los riesgos en Forex, y cómo no agotar más nuestro depósito en el mundo de las divisas.
Métodos de discretización de los movimientos de precios en Python
Hoy analizaremos varios métodos de discretización de precios en Python + MQL5. En este artículo compartiré mi experiencia práctica en el desarrollo de una biblioteca Python que implementa toda una gama de enfoques para la formación de barras: desde las clásicas Volume y Range bars hasta métodos más exóticos como Renko y Kagi, velas de ruptura de tres líneas, barras de Rango; ¿cuáles son sus estadísticas, de qué otra forma se pueden representar los precios de forma discreta?
Desarrollo de un sistema de repetición (Parte 60): Presionando play en el servicio (I)
Llevamos bastante tiempo trabajando únicamente con los indicadores. Pero ahora ha llegado el momento de hacer que el servicio vuelva a ejecutar su trabajo y podamos ver el gráfico construyéndose con los datos proporcionados. Sin embargo, como no todo es tan simple, será necesario observar para entender lo que nos espera.
Métodos de ensamble para mejorar predicciones numéricas en MQL5
En este artículo presentamos la implementación de varios métodos de aprendizaje por ensamble en MQL5 y examinamos su efectividad en distintos escenarios.
Kit de herramientas de negociación MQL5 (Parte 7): Ampliación de la libreria EX5 de gestión del historial con las funciones de última orden pendiente cancelada
Aprenda a completar la creación del módulo final en la librería History Manager EX5, centrándose en las funciones responsables de gestionar la orden pendiente cancelada más recientemente. Esto le proporcionará las herramientas necesarias para recuperar y almacenar de manera eficiente los detalles clave relacionados con las órdenes pendientes canceladas con MQL5.
Algoritmo de optimización de neuroboides 2 — Neuroboids Optimization Algorithm 2 (NOA2)
El nuevo algoritmo de optimización de autor, NOA2 (Neuroboids Optimisation Algorithm 2), combina los principios de la inteligencia de enjambre con el control neuronal. El NOA2 combina la mecánica del comportamiento de los enjambres de neuroboids con un sistema neuronal adaptativo que permite a los agentes ajustar de forma autónoma su comportamiento a medida que buscan un óptimo. El algoritmo se está desarrollando activamente y muestra potencial para resolver problemas complejos de optimización.
Simulación de mercado (Parte 15): Sockets (IX)
En este artículo, explicaré una de las posibles soluciones a lo que he estado intentando mostrar. Es decir, cómo permitir que un usuario de Excel realice una acción en MetaTrader 5 sin enviar órdenes ni abrir o cerrar una posición. La idea es que el usuario utilice Excel para realizar un análisis fundamental de algún símbolo. Y que, usando únicamente Excel, pueda indicar a un Asesor Experto que se esté ejecutando en MetaTrader 5 que debe abrir o cerrar una posición determinada.
Técnicas de remuestreo para la evaluación de predicciones y clasificaciones en MQL5
En este artículo exploraremos e implementaremos métodos para evaluar la calidad de los modelos que utilizan un único conjunto de datos como conjuntos de entrenamiento y validación.
Determinamos la sobrecompra y la sobreventa usando la teoría del caos
Hoy determinaremos la sobrecompra y la sobreventa del mercado mediante la teoría del caos; usando la integración de los principios de la teoría del caos, la geometría fractal y las redes neuronales, pronosticaremos los mercados financieros. El presente artículo demostrará la aplicación del exponente de Lyapunov como medida de la aleatoriedad del mercado y la adaptación dinámica de las señales comerciales. La metodología incluye un algoritmo de generación de ruido fractal, activación por tangente hiperbólica y optimización con impulso.
Simulación de mercado (Parte 08): Sockets (II)
¿Qué te parece si creamos algo práctico con sockets? Bien, en este artículo empezaremos a crear un minichat. Acompáñanos y descubre cómo se hace, porque será algo bastante interesante. Recuerda que el código que se mostrará aquí tiene un objetivo puramente didáctico. En realidad, no deberías utilizar este código con fines comerciales ni en una aplicación finalizada, ya que no cuenta con ningún tipo de seguridad en la transmisión de datos y es posible ver el contenido que se está transportando a través del socket.
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 13): Herramienta RSI Sentinel
La evolución de los precios puede analizarse eficazmente identificando divergencias, con indicadores técnicos como el RSI que proporcionan señales de confirmación cruciales. En el siguiente artículo, explicamos cómo el análisis automatizado de divergencias del RSI puede identificar continuaciones y reversiones de tendencias, ofreciendo así información valiosa sobre el sentimiento del mercado.
Mecanismos de compuertas en el aprendizaje en conjuntos
En este artículo, continuamos nuestra exploración de los modelos ensamblados analizando el concepto de compuertas, concretamente cómo pueden ser útiles para combinar los resultados de los modelos con el fin de mejorar la precisión de las predicciones o la generalización de los modelos.
Operar con noticias de manera sencilla (Parte 4): Mejora del rendimiento
Este artículo profundizará en los métodos para mejorar el tiempo de ejecución del experto en el probador de estrategias. El código se escribirá para dividir los tiempos de los eventos de noticias en categorías por hora. Las horas de estos eventos noticiosos se accederán dentro de la hora especificada. Esto garantiza que el EA pueda gestionar de manera eficiente las operaciones basadas en eventos tanto en entornos de alta como de baja volatilidad.
Analizamos el código binario de los precios en bolsa (Parte II): Convirtiendo a BIP39 y escribiendo un modelo GPT
Seguimos intentando descifrar los movimientos de los precios.... ¿Qué tal un análisis lingüístico del "diccionario de mercado" que obtendríamos convirtiendo el código binario de precios en BIP39? En el presente artículo, nos adentramos en un enfoque innovador del análisis de los datos bursátiles y exploramos cómo pueden aplicarse las modernas técnicas de procesamiento del lenguaje natural al lenguaje del mercado.
Creación de un Panel de administración de operaciones en MQL5 (Parte IX): Organización del código (II): Modularización
En este debate, damos un paso más allá al desglosar nuestro programa MQL5 en módulos más pequeños y manejables. Estos componentes modulares se integrarán posteriormente en el programa principal, mejorando su organización y facilidad de mantenimiento. Este enfoque simplifica la estructura de nuestro programa principal y permite reutilizar los componentes individuales en otros asesores expertos (EA) y desarrollos de indicadores. Al adoptar este diseño modular, creamos una base sólida para futuras mejoras, lo que beneficia tanto a nuestro proyecto como a la comunidad de desarrolladores en general.
Simulación de mercado (Parte 09): Sockets (III)
Este artículo es la continuación del anterior. En él veremos cómo se implementará el Asesor Experto, centrándonos principalmente en cómo debe hacerse el código del servidor. El código del artículo anterior no es suficiente para que las cosas funcionen como deberían, por lo que es necesario profundizar en él. Por esta razón, es necesario que leas ambos artículos para comprender mejor lo que ocurrirá.
ADAM poblacional (Estimación Adaptativa de Momentos)
Este artículo presenta la transformación del conocido y popular método de optimización ADAM basado en gradientes en un algoritmo basado en poblaciones y su modificación con la introducción de individuos híbridos. El nuevo enfoque permite crear agentes que combinen elementos de soluciones exitosas mediante una distribución de probabilidades. Una innovación clave es la generación de poblaciones híbridas que acumulan de forma adaptativa la información de las soluciones más prometedoras, mejorando la eficacia de la búsqueda en espacios multidimensionales complejos.
Simulación de mercado (Parte 13): Sockets (VII)
Cuando tú desarrollas algo, ya sea en xlwings o en cualquier otro paquete que nos permita leer y escribir directamente en Excel, en realidad deberías notar que todos los programas, funciones o procedimientos se ejecutan y luego finalizan su tarea. No permanecen allí dentro de un bucle, y, por más que intentes hacer las cosas de otra forma.
Simulación de mercado (Parte 07): Sockets (I)
Sockets. ¿Sabes para qué sirven o cómo usarlos en MetaTrader 5? Si la respuesta es no, comencemos aprendiendo un poco sobre ellos. Este artículo trata de lo más básico. Pero, como existen diversas maneras de hacer lo mismo, y lo que realmente nos interesa es siempre el resultado, quiero mostrar que sí, existe una forma sencilla de pasar datos desde MetaTrader 5 hacia otros programas, como, por ejemplo, Excel. Sin embargo, la idea principal no es transferir datos de MetaTrader 5 a Excel, sino hacer lo contrario. Es decir, transferir datos desde Excel, o desde cualquier otro programa, hacia MetaTrader 5.
Desarrollo de un sistema de repetición (Parte 64): Presionando play en el servicio (V)
En este artículo, mostraré cómo corregir dos errores presentes en el código. Sin embargo, he intentado explicarlas de manera que tú, aspirante a programador, entiendas que las cosas no siempre ocurrirán como habías previsto. Pero esto no debe ser motivo de desesperación, sino una oportunidad para aprender. El contenido expuesto aquí tiene como único propósito ser didáctico. En ningún caso debe interpretarse como una aplicación cuya finalidad sea distinta al aprendizaje y estudio de los conceptos presentados.
Trading con algoritmos: La IA y su camino hacia las alturas doradas
En este artículo veremos un método para crear estrategias comerciales para el oro utilizando el aprendizaje automático. Considerando el enfoque propuesto para el análisis y la previsión de series temporales desde distintos ángulos, podemos determinar sus ventajas e inconvenientes en comparación con otras formas de crear sistemas comerciales basados únicamente en el análisis y la previsión de series temporales financieras.