Artículos sobre análisis de datos y estadísticas en MQL5

icon

Los artículos sobre los modelos matemáticos y leyes de probabilidades serán interesantes para muchos operadores. Es que las matemáticas han sido puestas como base de los indicadores, y el conocimiento de las estadísticas es necesario para el análisis de los resultados del trading y el desarrollo de las estrategias.

Lea sobre la lógica difusa, filtros digitales, perfil del mercado, mapas de Kohonen, gas neuronal y muchas otras herramientas que pueden ser utilizadas para el trading.

Nuevo artículo
últimas | mejores
Trabajando con las series temporales en la biblioteca DoEasy (Parte 48): Indicadores de periodo y símbolo múltiples en un búfer en una subventana
Trabajando con las series temporales en la biblioteca DoEasy (Parte 48): Indicadores de periodo y símbolo múltiples en un búfer en una subventana

Trabajando con las series temporales en la biblioteca DoEasy (Parte 48): Indicadores de periodo y símbolo múltiples en un búfer en una subventana

En el presente artículo, analizaremos la creación de indicadores estándar de periodo y símbolo múltiples que utilizan un búfer de indicador para sus construcciones, y que funcionan en una subventana del gráfico. Asimismo, prepararemos las clases de la biblioteca para trabajar con los indicadores estándar que funcionan en la ventana principal del programa, o que tienen más de un búfer para mostrar sus datos.
preview
Sistema de arbitraje de alta frecuencia en Python con MetaTrader 5

Sistema de arbitraje de alta frecuencia en Python con MetaTrader 5

Hoy vamos a crear un sistema de arbitraje legal a los ojos de los brókeres, que creará miles de precios sintéticos en el mercado Fórex, los analizará y negociará con éxito para obtener beneficios.
preview
Indicadores alternativos de riesgo y rentabilidad en MQL5

Indicadores alternativos de riesgo y rentabilidad en MQL5

En este artículo, presentaremos una aplicación de varias medidas de rentabilidad y riesgo consideradas alternativas al ratio de Sharpe e investigaremos diferentes curvas de capital hipotéticas para analizar sus características.
preview
Algoritmos de optimización de la población: Algoritmo de gotas de agua inteligentes (Intelligent Water Drops, IWD)

Algoritmos de optimización de la población: Algoritmo de gotas de agua inteligentes (Intelligent Water Drops, IWD)

El artículo analiza un interesante algoritmo, las gotas de agua inteligentes, IWD, presente en la naturaleza inanimada, que simula el proceso de formación del cauce de un río. Las ideas de este algoritmo han permitido mejorar significativamente el anterior líder de la clasificación, el SDS, y el nuevo líder (SDSm modificado); como de costumbre, se puede encontrar en el archivo del artículo.
preview
Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería

Creación de un Panel de administración de operaciones en MQL5 (Parte I): Creación de una interfaz de mensajería

Este artículo analiza la creación de una interfaz de mensajería para MetaTrader 5, dirigida a los administradores de sistemas, para facilitar la comunicación con otros traders directamente dentro de la plataforma. Las integraciones recientes de plataformas sociales con MQL5 permiten una rápida transmisión de señales a través de diferentes canales. Imagina poder validar las señales enviadas con un solo clic: "SÍ" o "NO". Sigue leyendo para obtener más información.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 49): Indicadores estándar de período, símbolo y búfer múltiples

Trabajando con las series temporales en la biblioteca DoEasy (Parte 49): Indicadores estándar de período, símbolo y búfer múltiples

En el presente artículo, vamos a mejorar las clases de la biblioteca para tener la posibilidad de crear los indicadores estándar de período y símbolo múltiples que requieren varios búferes de indicador para visualizar sus datos.
preview
Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

Python, ONNX y MetaTrader 5: Creamos un modelo RandomForest con preprocesamiento de datos RobustScaler y PolynomialFeatures

En este artículo, crearemos un modelo de bosque aleatorio en Python, entrenaremos el modelo y lo guardaremos como un pipeline ONNX con preprocesamiento de datos. Además, usaremos el modelo en el terminal MetaTrader 5.
preview
Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas

Construya Asesores Expertos Auto-Optimizables con MQL5 y Python (Parte II): Ajuste de redes neuronales profundas

Los modelos de aprendizaje automático vienen con varios parámetros ajustables. En esta serie de artículos, exploraremos cómo personalizar sus modelos de IA para que se adapten a su mercado específico utilizando la biblioteca SciPy.
preview
Aproximación por fuerza bruta a la búsqueda de patrones (Parte VI): Optimización cíclica

Aproximación por fuerza bruta a la búsqueda de patrones (Parte VI): Optimización cíclica

En este artículo mostraremos la primera parte de las mejoras que nos permitieron no solo cerrar toda la cadena de automatización para comerciar en MetaTrader 4 y 5, sino también hacer algo mucho más interesante. A partir de ahora, esta solución nos permitirá automatizar completamente tanto el proceso de creación de asesores como el proceso de optimización, así como minimizar el gasto de recursos a la hora de encontrar configuraciones comerciales efectivas.
preview
Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU

Aprendizaje automático y Data Science (Parte 26): La batalla definitiva en la previsión de series temporales: redes neuronales LSTM frente a GRU

En el artículo anterior, hablamos de una RNN sencilla que, a pesar de su incapacidad para comprender las dependencias a largo plazo en los datos, fue capaz de realizar una estrategia rentable. En este artículo hablaremos tanto de la memoria a largo plazo (LSTM) como de la unidad recurrente controlada (GRU). Estas dos se introdujeron para superar las deficiencias de una RNN simple y ser más astuta que ella.
preview
Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Redes neuronales: así de sencillo (Parte 15): Clusterización de datos usando MQL5

Continuamos analizando el método de clusterización. En este artículo, crearemos una nueva clase CKmeans para implementar uno de los métodos de clusterización de k-medias más extendidos. Según los resultados de la prueba, el modelo ha podido identificar alrededor de 500 patrones.
preview
Desarrollo de un robot en Python y MQL5 (Parte 2): Selección, creación y entrenamiento de modelos, simulador personalizado en Python

Desarrollo de un robot en Python y MQL5 (Parte 2): Selección, creación y entrenamiento de modelos, simulador personalizado en Python

Hoy vamos a continuar con la serie de artículos sobre la creación de un robot comercial en Python y MQL5. En el presente artículo, resolveremos el problema de la selección y el entrenamiento de modelos, la prueba de los mismos, la aplicación de la validación cruzada, la búsqueda en cuadrícula y el problema del ensamblaje de modelos.
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 71): Eventos de la colección de objetos de gráfico

En el presente artículo, crearemos la funcionalidad necesaria para monitorear algunos eventos de los objetos del gráfico: añadir y eliminar gráficos de símbolos, añadir y eliminar subventanas en el gráfico, y también añadir/eliminar/cambiar indicadores en las ventanas del gráfico.
preview
Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

Aprendizaje automático y Data Science (Parte 06). Redes neuronales (Parte 02): arquitectura de la redes neuronales con conexión directa

En el artículo anterior, comenzamos a estudiar las redes neuronales con conexión directa, pero hay algunas cosas que quedaron sin resolver. Una de ellas es el diseño de la arquitectura. Por ello, en el presente artículo, veremos cómo diseñar una red neuronal flexible, teniendo en cuenta los datos de entrada, el número de capas ocultas y los nodos de cada red.
preview
Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II

Algoritmos de optimización de la población: Algoritmo genético binario (Binary Genetic Algorithm, BGA). Parte II

En este artículo, analizaremos el algoritmo genético binario (BGA), que modela los procesos naturales que ocurren en el material genético de los seres vivos en la naturaleza.
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales
Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

Implementando OLAP en la negociación (Parte 2): Visualización de los resultados del análisis interactivo de los datos multidimensionales

En este artículo, se consideran diversos aspectos del desarrollo de la interfaz gráfica interactiva de un programa MQL diseñado para el procesamiento analítico en línea (OLAP) del historial de la cuenta y de los informes comerciales. Para obtener un resultado visual, se usan las ventanas maximizadas y de escala, una disposición adaptable de los controles «de goma» y un nuevo control para mostrar diagramas. A base de eso, fue implementado GUI con una selección de indicadores a lo largo de los ejes de coordenadas, funciones agregadas, tipos de los gráficos y ordenaciones.
preview
Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)

Algoritmos de optimización de la población: Algoritmo del mono (Monkey algorithm, MA)

En este artículo analizaremos el algoritmo de optimización "Algoritmo del Mono" (MA). La capacidad de estos ágiles animales para superar obstáculos complicados y alcanzar las copas de los árboles más inaccesibles fue la base de la idea del algoritmo MA.
preview
Características del Wizard MQL5 que debe conocer (Parte 04): Análisis Discriminante Lineal

Características del Wizard MQL5 que debe conocer (Parte 04): Análisis Discriminante Lineal

El tráder moderno está casi siempre a la búsqueda de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. En esta serie de artículos, trataremos de demostrar que el Wizard MQL5 es la verdadera columna vertebral para un tráder en su búsqueda.
preview
Algoritmos de optimización de la población: Algoritmo de salto de rana aleatorio (Shuffled Frog-Leaping, SFL)

Algoritmos de optimización de la población: Algoritmo de salto de rana aleatorio (Shuffled Frog-Leaping, SFL)

El artículo presenta una descripción detallada del algoritmo de salto de rana aleatorio (SFL) y sus capacidades para resolver problemas de optimización. El algoritmo SFL se inspira en el comportamiento de las ranas en su entorno natural y ofrece un enfoque innovador para la optimización de características. El algoritmo SFL supone una herramienta eficaz y flexible que puede gestionar una gran variedad de tipos de datos y alcanzar soluciones óptimas.
preview
Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Redes neuronales: así de sencillo (Parte 17): Reducción de la dimensionalidad

Seguimos analizando modelos de inteligencia artificial, y en particular, los algoritmos de aprendizaje no supervisado. Ya nos hemos encontrado con uno de los algoritmos de clusterización. Y en este artículo queremos compartir con ustedes una posible solución a los problemas de la reducción de la dimensionalidad.
Algoritmos de optimización de la población
Algoritmos de optimización de la población

Algoritmos de optimización de la población

Artículo de introducción a los algoritmos de optimización (AO). Clasificación. En el artículo, intentaremos crear un banco de pruebas (un conjunto de funciones) que servirá en el futuro para comparar los AO entre sí, e incluso, quizás, para identificar el algoritmo más universal de todos los ampliamente conocidos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 16): Un nuevo sistema de clases

Precisamos organizarnos mejor. El código está creciendo y si no lo organizamos ahora, será imposible hacerlo después. Así que vamos a dividir para conquistar. El hecho de que MQL5 nos permita usar clases nos ayudará en esta tarea. Pero para hacerlo, es necesario que tengas algún conocimiento sobre algunas cosas relacionadas con las clases. Y tal vez lo que más confunde a los aspirantes y principiantes es la herencia. Así que en este artículo, te mostraré de manera práctica y sencilla cómo usar estos mecanismos.
preview
Procesos no estacionarios y regresión espuria

Procesos no estacionarios y regresión espuria

El presente artículo pretende demostrar la aparición de regresiones espurias cuando se intenta aplicar el análisis de regresión a procesos no estacionarios utilizando la simulación de Montecarlo.
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico
Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

Otras clases en la biblioteca DoEasy (Parte 69): Clases de colección de objetos de gráfico

A partir de este artículo, comenzaremos el desarrollo de una colección de clases de objetos de gráfico que almacenará una colección de lista de objetos de gráfico con sus subventanas y los indicadores en ellas, y nos permitirá trabajar con cualquier gráfico seleccionado y sus subventanas, o bien directamente con una lista de varios gráficos al mismo tiempo.
preview
Integración de modelos ocultos de Márkov en MetaTrader 5

Integración de modelos ocultos de Márkov en MetaTrader 5

En este artículo demostramos cómo los modelos ocultos de Márkov entrenados con Python pueden integrarse en las aplicaciones de MetaTrader 5. Los modelos ocultos de Márkov son una potente herramienta estadística utilizada para modelar datos de series temporales, en los que el sistema modelado se caracteriza por estados no observables (ocultos). Una premisa fundamental de los modelos ocultos de Márkov es que la probabilidad de estar en un estado determinado en un momento concreto depende del estado del proceso en el intervalo de tiempo anterior.
preview
Alan Andrews y sus métodos de análisis de series temporales

Alan Andrews y sus métodos de análisis de series temporales

Alan Andrews es uno de los "educadores" más célebres del mundo moderno en el campo del trading. Su "tridente" está incluido en casi todos los programas modernos de análisis de cotizaciones, pero la mayoría de los tráders no utilizan ni una quinta parte de las posibilidades que ofrece esta herramienta. Y el curso original de Andrews incluye una descripción no solo del tridente (aunque sigue siendo lo esencial), sino también de algunas otras líneas útiles. Este artículo ofrece al lector una idea de las maravillosas técnicas de análisis de gráficos que Andrews enseñó en su curso original. Le advertimos que hay muchas fotos.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 20): FOREX (I)

La intención inicial de este artículo no será cubrir todas las características de FOREX, sino más bien adaptar el sistema de manera que puedas realizar al menos una repetición del mercado. La simulación quedará para otro momento. Sin embargo, en caso de que no tengas los ticks y solo tengas las barras, con un poco de trabajo, puedes simular posibles transacciones que podrían haber ocurrido en FOREX. Esto será hasta que te muestre cómo adaptar el simulador. El hecho de intentar trabajar con datos provenientes de FOREX dentro del sistema sin modificarlo conlleva errores de rango.
preview
Consejos de un programador profesional (Parte III): Registro Conexión al sistema de recopilación y análisis de logs Seq

Consejos de un programador profesional (Parte III): Registro Conexión al sistema de recopilación y análisis de logs Seq

Implementación de la clase Logger para unificar (estructurar) los mensajes mostrados en el diario del experto. Conexión al sistema de recopilación y análisis de logs Seq. Supervisión de los mensajes en el modo online.
preview
Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Análisis cuantitativo en MQL5: implementamos un algoritmo prometedor

Hoy veremos qué es el análisis cuantitativo, cómo lo utilizan los grandes jugadores y crearemos uno de los algoritmos de análisis cuantitativo en MQL5.
preview
Elaboración de previsiones económicas: el potencial de Python

Elaboración de previsiones económicas: el potencial de Python

¿Cómo utilizar los datos económicos del Banco Mundial para crear previsiones? ¿Qué ocurre si se combinan modelos de IA y economía?
preview
Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Características del Wizard MQL5 que debe conocer (Parte 5): Cadenas de Markov

Las cadenas de Markov son una poderosa herramienta matemática que se puede usar para modelar y predecir los datos de las series temporales en varios campos, incluido el financiero. En el modelado y la previsión de series temporales financieras, las cadenas de Markov se usan a menudo para modelar la evolución de los activos financieros a lo largo del tiempo, como los precios de las acciones o los tipos de cambio. Una de las principales ventajas de los modelos de cadenas de Markov es su simplicidad y sencillez de uso.
preview
Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

Trabajando con las series temporales en la biblioteca DoEasy (Parte 54): Clases herederas del indicador abstracto básico

En este artículo, vamos a hablar de la creación de las clases de los objetos herederos del indicador abstracto básico. Estos objetos nos permitirán crear los asesores expertos tipo indicador, recopilar y obtener estadísticas de valores de datos de diferentes indicadores y precios. Además, crearemos una colección de objetos de indicador de la cual se podrá obtener el acceso a las propiedades y datos de cada indicador creado en el programa.
preview
Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

Características del Wizard MQL5 que debe conocer (Parte 1): Análisis de regresión

De manera consciente o inconsciente, el tráder moderno está casi siempre en busca de nuevas ideas, probando constantemente nuevas estrategias, modificándolas y descartando las que han fracasado. Este proceso de investigación requiere mucho tiempo y se ve acompañado por muchos errores. En esta serie de artículos, intentaré demostrar que el Wizard MQL5 es un verdadero apoyo para el tráder. Gracias al Wizard, el tráder podrá ahorrar tiempo a la hora de poner en práctica sus ideas. Asimismo, podrá reducir la probabilidad de que surjan errores por duplicación de código. En lugar de perder el tiempo con el código, los tráders tendrán la posibilidad de poner en práctica su filosofía comercial.
preview
Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Desarrollo de un sistema de repetición — Simulación de mercado (Parte 22): FOREX (III)

Para aquellos que aún no han comprendido la diferencia entre el mercado de acciones y el mercado de divisas (forex), a pesar de que este ya es el tercer artículo en el que abordo esto, debo dejar claro que la gran diferencia es el hecho de que en forex no existe, o mejor dicho, no se nos informa acerca de algunas cosas que realmente ocurrieron en la negociación.
preview
Teoría de categorías en MQL5 (Parte 1)

Teoría de categorías en MQL5 (Parte 1)

La teoría de categorías es un área diversa y en expansión de las matemáticas, relativamente inexplorada aún en la comunidad MQL. Esta serie de artículos tiene como objetivo destacar algunos de sus conceptos para crear una biblioteca abierta y seguir utilizando esta maravillosa sección para crear estrategias comerciales.
preview
Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)

Desarrollando un EA comercial desde cero (Parte 17): Acceso a los datos en la web (III)

En este artículo continuaremos a aprender cómo obtener datos de la web para utilizarlos en un EA. Así que pongamos manos a la obra, o más bien a empezar a codificar un sistema alternativo.
preview
Implementando el algoritmo de aprendizaje ARIMA en MQL5

Implementando el algoritmo de aprendizaje ARIMA en MQL5

En este artículo, implementaremos un algoritmo que aplica un modelo autorregresivo de media móvil integrada (modelo Box-Jenkins) utilizando el método de minimización de la función de Powell. Box y Jenkins argumentaron que la mayoría de las series temporales se pueden modelar con una o ambas estructuras.
preview
GIT: ¿Pero qué es esto?

GIT: ¿Pero qué es esto?

En este artículo presentaré una herramienta de suma importancia para quienes desarrollan programas. Si no conoces GIT, consulta este artículo para tener una noción de lo que se trata esta herramienta y cómo usarla junto al MQL5.
preview
Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

Desarrollo de un kit de herramientas para el análisis de la acción del precio (Parte 2): Script de comentarios analíticos

En línea con nuestra visión de simplificar la acción del precio, nos complace presentar otra herramienta que puede mejorar significativamente su análisis de mercado y ayudarle a tomar decisiones bien informadas. Esta herramienta muestra indicadores técnicos clave, como los precios del día anterior, los niveles significativos de soporte y resistencia, y el volumen de operaciones, al tiempo que genera automáticamente señales visuales en el gráfico.
preview
Validación cruzada simétrica combinatoria en MQL5

Validación cruzada simétrica combinatoria en MQL5

El artículo muestra la implementación de la validación cruzada simétrica combinatoria en MQL5 puro para medir el grado de ajuste tras optimizar la estrategia usando el algoritmo completo lento del simulador de estrategias.